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In the paper our method for construction of orthonormal polynomials — orthonormal
polynomial expansion method [OPEM] — is applied to water contact angle variations. Some
special features of the method are developed for this purpose. The total variance method
is demonstrated to include the errors in both dependent and independent variables. Two
polynomial expansions are presented for approximating function: orthonormal and “usual”
ones.
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1. Introduction

The phenomena related to liquid-solid contact are at present intensively investi-
gated. This is not only because of the various applications, but due to some unsolved
problems in the theory of contact between different phases [1]. Here we discuss the
kinetics of evaporation of water drop of deionized water. In the course of evapora-
tion of the drop, as the drop’s contact angle changes, we measure the frequency of
appearance of such angles within prescribed angle intervals.

2. Physical Data

The experimental data consist of the collection of measured contact angles 𝜗 of an
evaporating water drop. We register the frequencies 𝑓 of occurrence of these contact
angles contained in a given set of adjusted angle intervals. One can name these
frequencies of contact angles as the “state spectrum” of the evaporating drop. The
measurement is performed at equidistant time intervals (5 minutes). We use data from
several drops measured simultaneously to have a statistical ensemble for calculating
mean values and standard deviations. The measurement of the contact (wetting) angle
is carried out by an optical microscope method due to Antonov [2]. In more details,
(Fig. 1) a light refraction pattern in the form of a dark ring occurs when a light beam
1 crosses the drop 2, placed on a non wetting folio 3 (hostaphan), near its boundary.
Under the folio there is a glass plate 4 with a thickness 𝑑 and a refraction index 𝑛.
One measures the width 𝑎 of the dark ring thus produced. According to the laws
of geometric optics one can calculate the tangens of contact angle as a function of
the above cited parameters as follows: here 𝑁 is the water refraction index and the
segment denoted by 𝛿 on Fig. 1 can be neglected since 𝛿 ≪ 𝑎. We give below a
graphs on which the frequencies f are shown versus the collection of measured contact
angles. We present one type of such curves that corresponds to the water treated
by the gamma rays of a source of Co-60 (65 krad/h) for a time of 2 minutes (Figure
2-circles).

tg 𝜗 = 𝑛/
[︁(︀
𝑁2Δ− 𝑛2

)︀12 −Δ
]︁1/2

; 𝛿 = 1 + 𝑑2(𝑎− 𝛿)2,
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Figure 1. Experimental setup
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Figure 2. OPEM approximation by
11-th degree orthonormal polynomials
(triangles) of deionized treated water

data(circles)

3. Mathematical Algorithm

Define by {𝜗𝑖, 𝑓𝑖} arbitrary pairs of monitoring data 𝜗 = 𝜗𝑖 and 𝑓 = 𝑓𝑖, 𝑖 =
1, . . . ,𝑀 , introduced in section 2. We have also the experimental errors in both
variables — 𝜎𝑓𝑖 and 𝜎𝜗𝑖 . Consider the square of total uncertainty (total variance)
𝑆(𝜗, 𝑓), associated with (𝜗, 𝑓)

𝑆2
𝑖 = 𝜎𝑓𝑖

2 +

(︂
𝜕𝑓𝑖
𝜕𝜗𝑖

)︂2

𝜎𝜗𝑖

2, (1)

according the ideas of Bevington (1977) [3], where his proposal is to combine the
errors in both variables and assign them to dependent variable. One defines the errors
corridor 𝐶(𝜗, 𝑓), which is the set of all intervals

[𝑓(𝜗)− 𝑆(𝜗, 𝑓), 𝑓(𝜗) + 𝑆(𝜗, 𝑓)] , (2)

associated which each pair (𝜗, 𝑓). The first criterion to be satisfied is, that the fitting
curve should pass within the errors corridor 𝐶(𝜗, 𝑓). In the cases of errors only in 𝑓 ,
(i.e. 𝜎(𝜗) = 0, 𝜎(𝑓) ̸= (0)) the errors corridor 𝐶(𝜗, 𝑓) reduces to the set of intervals

[𝑓 − 𝜎(𝑓), 𝑓 + 𝜎(𝑓)],

for any 𝑓 . The second criterion for the fitting curve 𝑓appr(𝜗) is, that the expression

𝜒2 =

𝑀∑︁
𝑖=1

𝑤𝑖 [𝑓
appr(𝜗𝑖)− 𝑓(𝜗𝑖)]

2
/𝑆2 (𝜗𝑖, 𝑓𝑖) (3)

should be minimal. Some details of our calculation procedure are presented in our
papers [4–6].

Our procedure gives results for approximating function by two expansions: of
orthogonal coefficients {𝑎𝑖} and usual ones {𝑐𝑖} with optimal degree 𝐿:

𝑓 (𝑚)(𝜗) =
𝐿∑︁

𝑘=0

𝑎𝑘𝑃
(𝑚)
𝑘 (𝜗) =

𝐿∑︁
𝑘=0

𝑐𝑘𝜗
𝑘.
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The orthogonal coefficients are evaluated by the given values 𝑓𝑘, weights and orthog-
onal polynomials:

𝑎𝑖 =

𝑀∑︁
𝑘=1

𝑓𝑘𝑤𝑘𝑃
(𝑚)
𝑘 (𝜗𝑘).

Our recurrence relation for generating orthonormal polynomials and their derivatives
(𝑚 = 1, 2, . . .) is carried out by:

𝑃
(𝑚)
𝑖+1 (𝜗) = 𝛾𝑖+1

[︁
(𝜗− 𝜇𝑖+1)𝑃

(𝑚)
𝑖 (𝜗)− (1− 𝛿𝑖0) 𝜈𝑖𝑃

(𝑚)
𝑖−1 (𝜗) +𝑚𝑃

(𝑚−1)
𝑖 (𝜗)

]︁
,

where 𝜇𝑖 and 𝜈𝑖 are recurrence coefficients, and 𝛾𝑖 is a normalizing coefficient, de-
fined by scalar products of given data. One can generate 𝑃𝑚

𝑖 (𝜗) recursively. The
polynomials satisfy the following orthogonality relations:

𝑀∑︁
𝑖=1

𝑤𝑖𝑃
(0)
𝑘 (𝜗𝑖)𝑃

(0)
𝑙 (𝜗𝑖) = 𝛿𝑘,𝑙

over the discrete point set {𝜗𝑖, 𝑖 = 1, 2, . . .}, where 𝑤𝑖 = 1/𝑆2 (𝜗𝑖, 𝑓𝑖) are the corre-
sponding weights. The inherited errors in usual coefficients are given by the inherited
errors in orthogonal coefficients:

Δ𝑐𝑖 =

(︃
𝐿∑︁

𝑘=1

(︀
𝑐𝑘𝑖
)︀2)︃1/2

Δ𝑎𝑖,

where coefficients 𝑐𝑘𝑖 are defined explicitly in [6] and

Δ𝑎𝑖 =

(︃
𝑀∑︁
𝑘=1

𝑃 2
𝑖 (𝜗𝑘)𝑤𝑘 (𝑓𝑘 − 𝑓appr𝑘 )

2

)︃1/2

.

All the calculations for the sake of uniformity are carried out for 𝜗 in [−1, 1], i.e.
after the input interval is transformed to the unit interval. We remark some advan-
tages of OPEM: It uses unchanged the coefficients of the lower-order polynomials; it
avoids the procedure of inversion of the coefficient matrix to obtain the solution. The
preference is given to the first criterion and when it is satisfied, the search for the min-
imal chi-squared stops. All these features shorten the computing time and assure the
optimal solution ( by the criteria (2), and (3)). The procedure is iterative because of
the evaluation of derivatives on every iteration step and the result of the consequent
𝑘it-th iteration is called below the 𝑘it-the approximation. The similar algorithm is
given as “effective variance method” from Jones [7] and the solution is discussed in
the other papers, [8] Lybanon.

4. Approximation Results. Treated Deionized
Water Data

The numerical experiment is carried out for 𝑀 = 15 points data of water, treated
by 𝛾 rays and containing measurement errors in both variables. We approximated
them with the polynomial curve of optimal degree 𝐿 = 11, chosen between 2 to 14
with chi-squared= 0.64011. The iteration step is 𝑘it = 4. If 𝑘it = 1, chi-squared is
0.82612, if 𝑘it = 2, chi-squared is 0.64942, if 𝑘it = 3, chi-squared is 0.64014. On the
Fig. 2 we present the given data (circles) with their errors and the approximated data
by orthonormal polynomials (triangles). Here two types of data are enough close.
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In the Table 1 the given and approximated data by orthonormal and usual expan-
sions with 10-th degree of polynomials are presented. In the last column the deviation

Δ (𝑓ap𝑎 − 𝑓ap𝑐 ) = 𝑓appr,10𝑎 − 𝑓appr,10𝑐

is given. In the most points the two approximations are close till 3-rd meaningful
digit.

Table 1
OPEM approximation of contact water angle data

No. 𝜗 𝑓 𝜎𝜗 𝜎𝑓 𝑓appr,10𝑎 𝑓appr,10𝑐 Δ(𝑓ap𝑎 − 𝑓ap𝑐 )

1 7.5 0.01 0.6 0.001 1.15489 1.15349 0.01400
2 12.5 1.30 0.6 0.25 0.76497 0.76102 0.00395
3 17.5 2.90 0.6 0.30 3.13892 3.12845 0.01047
4 22.5 3.90 0.6 0.30 3.22969 3.20843 0.02126
5 27.5 4.70 0.6 0.38 5.84499 5.80593 0.03906
6 32.5 6.80 0.6 0.45 6.36952 6.29145 0.07807
7 37.5 5.10 0.6 0.40 4.79228 4.68782 0.10447
8 42.5 5.50 0.6 0.48 6.33505 6.16855 0.16650
9 47.5 11.20 0.6 0.90 12.03489 11.88760 0.14729
10 52.5 19.70 0.6 2.10 15.21490 15.19192 0.02298
11 57.5 15.60 0.6 2.70 10.17058 9.77367 0.39692
12 62.5 1.80 0.6 0.70 2.89065 2.57517 0.31548
13 67.5 7.10 0.6 0.75 5.50987 6.65696 -1.14709
14 72.5 11.10 0.6 1.40 11.74320 12.53682 -0.79362
15 77.5 5.10 0.6 0.66 5.06331 6.50434 -1.44104

In conclusion, the approximating results with optimal degrees of OPEM orthonor-
mal polynomials for contact (wetting) angle found by orthogonal and usual coefficients
show good accuracy, demonstrated from Fig. 2 and Table 1. The approximating curves
are chosen at 4 − 𝑡ℎ approximation step to satisfy the proposed criteria. The results
show that the orthonormal and usual expansions are close to given one in the whole
interval. We have received good descriptions of the angle variations useful for further
investigations.
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УДК 519.6; 539.64
Применение метода полиномиальной аппроксимации к

испарению капли воды

Н. Б. Богданова, С. Т. Тодоров
Институт ядерных исследований и ядерной энергетики

Болгарской академии наук
Цареградское шос. 72, 1784 София, Болгария

В данной работе наш метод построения ортонормированных полиномов — метод рас-
ширения ортонормированных полиномов [OPEM] — применяется к изменениям краевого
угла смачивания. Для этой цели развиты некоторые особенности данного метода. Де-
монстрируется метод полной дисперсии, чтобы включить ошибки как в зависимые, так
и в независимые переменные. Два расширения полинома представлены для аппрокси-
мирующей функции: ортонормированное и «обычное».

Ключевые слова: аппроксимация ортонормированными и обычными полиномами,
испарение капли воды.




