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Using the field theoretic renormalization group the influence of strong uniaxial small-scale
anisotropy on the stability of inertial-range scaling regimes in a model of passively advected
transverse vector field by an incompressible turbulent flow is investigated. The velocity field
is taken to have a Gaussian statistics with zero mean and defined noise with finite time
correlations. It is shown that the inertial-range scaling regimes are given by the existence of
infrared stable fixed points of the corresponding renormalization group equations with some
angle integrals. The analysis of integrals is given. The problem is solved numerically and
borderline spatial dimension 𝑑𝑐 ∈ (2, 3] below which the stability of the scaling regime is not
present is found as a function of anisotropy parameters.
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1. Introduction

During the last two decades the so-called toy models of advection of a passive scalar
field (concentration of an impurity, temperature, etc.) or a vector field (weak mag-
netic field in an conductive environment) by a given Gaussian statistics of the velocity
field have played the main role in the theoretical investigations of intermittency and
anomalous scaling in fully developed turbulence [1, 2]. The reason for this is twofold.
On one hand, the breakdown of the classical Kolmogorov-Obuchov phenomenological
theory of fully developed turbulence [3] is more noticeable for simpler models of pas-
sively advected scalar or vector quantity than for the velocity field itself and, on the
other hand, the problem of a passive advection is easier from theoretical point of view
(see, e.g., [1] and references therein).

An effective approach for studying self-similar scaling behavior is the method of the
field theoretic renormalization group (RG) [4] which can be also used in the theory
of fully developed turbulence and related problems [5, 6]. During last decade the
so-called rapid-change models of a passive scalar or vector quantity advected by a
self-similar white-in-time velocity field (also known as Kraichnan model for scalar
case and Kazantsev-Kraichnan model for vector field) and their various generalized
descendants were analyzed. It was shown that within the field theoretic RG approach
the anomalous scaling is related to the existence of ”dangerous” composite operators
with negative critical dimensions in the framework of the operator product expansion
(OPE) [5, 6].

Nevertheless, one particular model of a passive vector advection is much more
complicated for theoretical investigations than the others even in the case when the
vector field is advected by the velocity field with a Gaussian statistics. It is the
model where the so-called stretching term is absent (the so-called 𝐴 = 0 model, see,
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e.g, [7–9]). The investigation of the anomalous scaling of correlation functions in
this model is essentially more complicated even in the simplest isotropic case and
the assumption of the presence of the small-scale anisotropy in the model leads to
difficulties even in analysis of the stability of the corresponding asymptotic scaling
regimes [10]. The complexity of its analysis is similar to the corresponding problem
in the field theoretic renormalization group approach to the stochastic Navier-Stokes
equation [10].

In what follows, we shall concentrate on analysis of the stability of scaling regimes
of the model and it will be shown that the inertial-range scaling regimes are given by
the infrared (IR) stable fixed points of the system of five differential Gell-Mann-Low
equations (also known as flow equations) which contain a special type of integrals.
Therefore, their calculations in process of integration of the system of differential
equations is needed. In this respect, one effective approach to the integration of the
integrals will be discussed in details.

2. The Model and the Field Theory

We consider the so-called 𝐴 = 0 model of the advection of transverse (solenoidal)
passive vector field b ≡ b(x, 𝑡) given by the stochastic equation

𝜕𝑡b = 𝜈0Δb− (v · ∇)b + f , , (1)

where 𝜕𝑡 ≡ 𝜕/𝜕𝑡, Δ ≡ ∇2 is the Laplace operator, 𝜈0 is the diffusivity (a subscript
0 denotes bare parameters of unrenormalized theory), and v ≡ v(x, 𝑡) is the incom-
pressible advecting velocity field. The vector field f ≡ f(x, 𝑡) is a transverse Gaussian
random (stirring) force with zero mean and covariance

𝐷𝑓
𝑖𝑗 ≡ ⟨𝑓𝑖(x, 𝑡)𝑓𝑗(x′, 𝑡′)⟩ = 𝛿(𝑡− 𝑡′)𝐶𝑖𝑗(r/𝐿), r = x− x′, (2)

where parentheses ⟨...⟩ hereafter denote average over corresponding statistical ensem-
ble and 𝐿 denotes an integral scale related to the stirring.. In what follows, the
concrete form of the correlator defined in (2) is not essential.

We suppose that the statistics of the velocity field is also given in the form of a
Gaussian distribution with zero mean and pair correlation function [8]

⟨𝑣𝑖(𝑥)𝑣𝑗(𝑥′)⟩ ≡ 𝐷𝑣
𝑖𝑗(𝑥;𝑥

′) =
∫︁

𝑑𝑑k𝑑𝜔
(2𝜋)𝑑+1

𝑅𝑖𝑗(k)𝐷𝑣(𝜔,k)𝑒−𝑖𝜔(𝑡−𝑡′)+𝑖k(x−x′), (3)

where 𝑑 is the dimension of the space, k is the wave vector, and 𝑅𝑖𝑗(k) is the uniaxial
anisotropic transverse projector taken in the following form [10]

𝑅𝑖𝑗(k) =
(︀
1 + 𝛼1(n · k)2/𝑘2

)︀
𝑃𝑖𝑗(k) + 𝛼2𝑛𝑠𝑛𝑙𝑃𝑖𝑠(k)𝑃𝑗𝑙(k), (4)

where 𝑃𝑖𝑗(k) ≡ 𝛿𝑖𝑗 − 𝑘𝑖𝑘𝑗/𝑘
2 is common isotropic transverse projector, the unit vec-

tor n determines the distinguished direction of uniaxial anisotropy, and 𝛼1, 𝛼2 are the
parameters characterizing anisotropy. The necessity of positive definiteness of the cor-
relation tensor 𝐷𝑣

𝑖𝑗 leads to the restrictions on the values of the anisotropy parameters,
namely 𝛼1,2 > −1. The function 𝐷𝑣(𝜔,k) in (3) is taken in the following form [8]

𝐷𝑣(𝜔, 𝑘) =
𝑔0𝑢0𝜈

3
0𝑘

4−𝑑−2𝜀−𝜂

(𝑖𝜔 + 𝑢0𝜈0𝑘2−𝜂)(−𝑖𝜔 + 𝑢0𝜈0𝑘2−𝜂)
, (5)

where 𝑔0 plays the role of the coupling constant of the model, the parameter 𝑢0 is the
ratio of turnover time of scalar field and velocity correlation time, and the positive
exponents 𝜀 and 𝜂 are small RG expansion parameters (for details see [8, 10]). The
value 𝜀 = 4/3 corresponds to the Kolmogorov ”two-thirds law” for the spatial statistics
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of velocity field, and 𝜂 = 4/3 corresponds to the Kolmogorov frequency. Simple
dimensional analysis shows that 𝑔0 and 𝑢0, which we commonly term as charges,
are related to the characteristic ultraviolet (UV) momentum scale Λ (or inner legth
𝑙 ∼ Λ−1) by relations 𝑔0 ≃ Λ2𝜀 and 𝑢0 ≃ Λ𝜂.

It can be shown that the stochastic problem (1)–(3) can be treated as a field theory
with the following action functional [4, 5]

𝑆(Φ) = 𝑏′𝑗
[︀(︀
−𝜕𝑡 − 𝑣𝑖𝜕𝑖 + 𝜈0Δ + 𝜈0𝜒10(n · 𝜕)2

)︀
𝛿𝑗𝑘 +

+ 𝑛𝑗𝜈0
(︀
𝜒20Δ + 𝜒30(n · 𝜕)2

)︀
𝑛𝑘

]︀
𝑏𝑘 −

1
2

(︁
𝑣𝑖[𝐷𝑣

𝑖𝑗 ]
−1𝑣𝑗 − 𝑏′𝑖𝐷

𝑓
𝑖𝑗𝑏

′
𝑗

)︁
, (6)

where 𝐷𝑣
𝑖𝑗 and 𝐷𝑓

𝑖𝑗 are given in (3) and (2) respectively, b′ is an auxiliary vector field
(see, e.g., [5]), and the required integrations over 𝑥 = (x, 𝑡) and summations over the
vector indices are implied. In action (6) the terms with new parameters 𝜒10, 𝜒20, and
𝜒30 are related to the presence of small-scale anisotropy and they are necessary to
make the model multiplicatively renormalizable. Model (6) corresponds to a standard
Feynman diagrammatic technique (see, e.g., [8] for details) and the standard analysis
of canonical dimensions then shows which one-irreducible Green functions can possess
UV superficial divergences.

The functional formulation (6) gives possibility to use the field-theoretic methods,
including the RG technique to solve the problem. By means of the RG approach it is
possible to extract large-scale asymptotic behavior of the correlation functions after
an appropriate renormalization procedure which is needed to remove UV-divergences.

Using the standard RG analysis (see, e.g., [5,8]) one concludes that possible scaling
regimes of the model are given by the IR stable fixed points of the system of five
nonlinear RG differential equations (flow equations) for five scale dependent effective
variables (charges) 𝐶 = {𝑔, �̄�, �̄�1, �̄�2, �̄�3} of the model which are functions of the
dimensionless scale parameter 𝑡 = 𝑘/Λ [5]. In our model the system of the flow
equations has the following form

𝑡
𝑑𝑔

𝑑𝑡
= 𝑔(−2𝜀+ 2𝛾1), 𝑡

𝑑�̄�

𝑑𝑡
= �̄�(−𝜂 + 𝛾1), 𝑡

𝑑�̄�𝑖

𝑑𝑡
= �̄�𝑖(𝛾1 − 𝛾𝑖+1), 𝑖 = 1, 2, 3, (7)

where the functions 𝛾𝑖, 𝑖 = 1, 2, 3, 4 are given by the following expressions (one-loop
approximation)

𝛾1 = −𝑔 𝑆𝑑−1

(2𝜋)𝑑

1
(𝑑− 1)(𝑑+ 1)

1∫︁
0

𝑑𝑥
(1− 𝑥2)(𝑑−3)/2

𝑤1𝑤2
𝐾1, (8)

𝛾𝑖+1 = − 𝑔

𝜒𝑖

𝑆𝑑−1

(2𝜋)𝑑

1
(𝑑− 1)(𝑑+ 1)

1∫︁
0

𝑑𝑥
(1− 𝑥2)(𝑑−3)/2

𝑤1𝑤2
𝐾𝑖+1, 𝑖 = 1, 2, 3, (9)

where 𝑆𝑑 = 2𝜋𝑑/2/Γ(𝑑/2) is the surface of the 𝑑 dimensional sphere,

𝑤1 = (1 + 𝑢+ 𝜒1𝑥
2), 𝑤2 = (1 + 𝑢+ 𝜒1𝑥

2 + (𝜒2 + 𝜒3𝑥
2)(1− 𝑥2)),

and the coefficients 𝐾𝑖, 𝑖 = 1, 2, 3, 4 are given as follows:

𝐾1 = 2(1 + 𝜒2 + 𝑢) + 2(𝜒1 − 𝜒2 + 𝜒3 + 𝛼1(1 + 𝜒2 + 𝑢))𝑥2 − (1 + 2𝜒3 − 2𝛼1(𝜒1−
− 𝜒2 + 𝜒3) + 𝑢+ 𝛼2(1 + 𝑢))𝑥4 − (𝜒1 + 𝛼2(−1 + 𝜒1 − 𝑢) + 𝛼1(1 + 2𝜒3 + 𝑢))𝑥6−
− (𝛼1 − 𝛼2)𝜒1𝑥

8 + 𝑑(−1 + 𝑥)(1 + 𝑥)(−2(1 + 𝜒2 + 𝑢)− (2𝜒1 − 𝜒2 + 2𝜒3+

+ 2𝛼1(1 + 𝜒2 + 𝑢)− 𝛼2(1 + 𝜒2 + 𝑢))𝑥2 + (𝛼1(−2𝜒1 + 𝜒2 − 2𝜒3) + 𝜒3+
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+ 𝛼2(𝜒1 − 𝜒2 + 𝜒3))𝑥4 + (𝛼1 − 𝛼2)𝜒3𝑥
6) + 𝑑2(1 + 𝛼1𝑥

2)(−1− 𝑢− (𝜒1 + 𝜒3)𝑥2+

+ 𝜒3𝑥
4 + 𝜒2(−1 + 𝑥2)),

𝐾2 = 𝛼2(−1 + 𝑥2)((−2 + 𝑑)(1 + 𝑑)(1 + 𝜒2 + 𝑢) + (3− 2𝜒1 + 4𝜒2 − 2𝜒3 + 3𝑢+

+ 𝑑(1− 𝜒1 + 𝜒2 − 𝜒3 + 𝑑(−1 + 𝜒1 − 2𝜒2 + 𝜒3 − 𝑢) + 𝑢))𝑥2 − (−3𝜒1+

+ 2(1 + 𝜒2 − 2𝜒3 + 𝑢) + 𝑑(1 + (−1 + 𝑑)𝜒1 − 𝑑𝜒2 − 𝜒3 + 2𝑑𝜒3 + 𝑢))𝑥4−
− ((2 + 𝑑)𝜒1 − (−2 + 𝑑2)𝜒3)𝑥6)− (1 + 𝛼1𝑥

2)(𝑑(1 + 𝜒2 + 𝑢)−
− (−2𝜒2 − 3(1 + 𝑢) + 𝑑(−𝜒1 + 𝜒2 − 𝜒3 + 𝑑(1 + 𝜒2 + 𝑢)))𝑥2−

− (−3𝜒1 + 2(1 + 𝜒2 − 𝜒3 + 𝑢) + 𝑑(1 + 𝜒3 + 𝑑(𝜒1 − 𝜒2 + 𝜒3) + 𝑢))𝑥4−
− ((2 + 𝑑)𝜒1 − (−2 + 𝑑2)𝜒3)𝑥6),

𝐾3 = −𝑑(1 + 𝑢) + (𝑑2 − 2𝑑− 2)𝜒2 + (−3 + 2𝜒2 − 2𝜒3 + 𝛼2(−1 + 𝑑𝜒2 − 𝑢)− 3𝑢+

+ 𝛼1(−2𝜒2 + 𝑑2𝜒2 − 𝑑(1 + 2𝜒2 + 𝑢)) + 𝑑(−𝜒1 + 3𝜒2 − 2𝜒3 + 𝑑(1− 𝜒2 + 𝜒3+

+ 𝑢)))𝑥2 + (−3𝜒1 + 2(1 + 𝜒3 + 𝑢) + 𝑑(1 + 𝑑𝜒1 − 𝜒2 + 3𝜒3 − 𝑑𝜒3 + 𝑢)+
+ 𝛼2(3− 𝜒1 + 3𝑢+ 𝑑(1− 2𝜒2 + 𝜒3 + 𝑢)) + 𝛼1(−3 + 2𝜒2 − 2𝜒3 − 3𝑢+ 𝑑(−𝜒1+

+ 3𝜒2 − 2𝜒3 + 𝑑(1− 𝜒2 + 𝜒3 + 𝑢))))𝑥4 + ((2 + 𝑑)𝜒1 − 𝑑𝜒3 + 𝛼2(3𝜒1 + 𝑑(−1+
+ 𝜒1 + 𝜒2 − 2𝜒3 − 𝑢)− 2(1 + 𝑢)) + 𝛼1(−3𝜒1 + 2(1 + 𝜒3 + 𝑢)+

+ 𝑑(1 + 𝑑𝜒1 − 𝜒2 + 3𝜒3 − 𝑑𝜒3 + 𝑢)))𝑥6 + (𝛼1 − 𝛼2)((2 + 𝑑)𝜒1 − 𝑑𝜒3)𝑥8,

𝐾4 = 𝛼2(−1 + 𝑥2)(1 + 2𝜒2 + 𝑢+ (𝜒1 − 2(4 + 3𝜒2 − 𝜒3 + 4𝑢))𝑥2 + 2(4− 4𝜒1 + 2𝜒2−
− 3𝜒3 + 4𝑢)𝑥4 + 4(2𝜒1 + 𝜒3)𝑥6 + 𝑑(1 + 𝜒2 + 𝑢+ (−6 + 𝜒1 − 𝜒2 + 𝜒3 − 6𝑢)𝑥2−

− (−6 + 6𝜒1 + 𝜒3 − 6𝑢)𝑥4 + 6𝜒1𝑥
6)− 𝑑2(𝑥2 − 1)(−(1 + 𝜒3 + 𝑢)𝑥2 + (−𝜒1 + 𝜒3)𝑥4+

+ 𝜒2(𝑥2 − 1)))− (1 + 𝛼1𝑥
2)(3− (12− 3𝜒1 − 2𝜒3 + 𝑑(6 + 𝜒3))𝑥2+

+ ((2 + 𝑑)(4 + 𝑑− 6𝜒1) + (−6 + 𝑑+ 𝑑2)𝜒3)𝑥4 + (2 + 𝑑)((4 + 𝑑)𝜒1 − (−2 + 𝑑)𝜒3)𝑥6−
− (𝑑− 2)𝜒2(𝑥2 − 1)((2 + 𝑑)𝑥2 − 1) + 𝑢(3 + (2 + 𝑑)𝑥2((4 + 𝑑)𝑥2 − 6))).

In (7), the scale parameter 𝑡 belongs to the interval 0 6 𝑡 6 1 with the initial
conditions given at 𝑡 = 1 and the IR stable fixed point corresponds to the limit 𝑡→ 0,
i.e., 𝐶|𝑡=0 = 𝐶*.

Before we shall perform the analysis and solution of the system of differential
equations (7) it is necessary to guarantee the convergence of the integrals which are
present in (8) and (9) within the interval 𝑥 ∈ [0, 1]. Another question is to find an
effective method to solve the integrals. Both questions are briefly discussed in the
next section.

3. Numerical and Analytical Analysis of Integrals

The integrals in (8) and (9) are linear combinations of the following integrals

𝐼 =
1∫︁

0

𝑑𝑥
(1− 𝑥2)

𝑑−3
2 𝑥2𝑛

𝑤1𝑤2
, (10)

where the explicit form of functions 𝑤1 and 𝑤2 are given in the text below (8) and (9)
and 𝑛 is a natural number, i.e., 𝑛 = 0, 1, 2, .... Therefore, the 𝛾 functions in (8) and
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(9) will be convergent if and only if integrals (10) are convergent. The necessary and
sufficient conditions for the convergence of integrals (10) are subject of the following
theorem:

Theorem 1. The integrals (10) are convergent within integration interval 𝑥 ∈
[0, 1] if and only if the following conditions are satisfied:

i) 𝜒1 ∈ (−1− 𝑢,∞);
ii) 𝜒2 ∈ (−1− 𝑢,∞);
iii) 𝜒3 ∈

(︁
−
(︀√

1 + 𝑢+ 𝜒1 +
√

1 + 𝑢+ 𝜒2

)︀2
,∞
)︁
.

Proof. The proof of the theorem is similar to the proof of an analogous theorem
which was proven in [10], therefore we shall not present it here. �

In principle, there are a few ways how to solve integrals (10). In what follows, we
shall try to transform them to the form which is more appropriate for their numerical
calculations, i.e, the procedure improves their convergent properties. The approach is
based on the following theorem:

Theorem 2. Let 𝛼 be a real number and let 𝑃0(𝑥) and 𝑄(𝑥) be polynomials of
real variable 𝑥 such that 𝑑(𝑃0(𝑥)) 6 𝑑(𝑄(𝑥)), where 𝑑(𝑅(𝑥)) denotes the degree of a
polynomial 𝑅(𝑥) and 𝑄(𝑥) is nonzero for 𝑥 ∈ [0, 1]. Then for arbitrary 𝑚 ∈ Z+

0 the
following formula holds:

𝐼 =
1∫︁

0

𝑃0(𝑥)
(︀
1− 𝑥2

)︀𝛼
𝑄(𝑥)

𝑑𝑥 =
𝑚∑︁

𝑖=1

[︂
1

4 (𝛼+ 𝑖)

(︂
𝑃𝑖−1(1)
𝑄(1)

− 𝑃𝑖−1(−1)
𝑄(−1)

)︂
+

+
√
𝜋

4
Γ(𝛼+ 𝑖)

Γ(𝛼+ 𝑖+ 1/2)

(︂
𝑃𝑖−1(1)
𝑄(1)

+
𝑃𝑖−1(−1)
𝑄(−1)

)︂]︂
+

1∫︁
0

𝑃𝑚(𝑥)
𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑚
𝑑𝑥, (11)

where

𝑃𝑖(𝑥) =
𝑃𝑖−1(𝑥)− (𝐴𝑖𝑥+𝐵𝑖)𝑄(𝑥)

1− 𝑥2
,

𝐴𝑖 =
1
2

(︂
𝑃𝑖−1(1)
𝑄(1)

− 𝑃𝑖−1(−1)
𝑄(−1)

)︂
, 𝐵𝑖 =

1
2

(︂
𝑃𝑖−1(1)
𝑄(1)

+
𝑃𝑖−1(−1)
𝑄(−1)

)︂ (12)

for 𝑖 = 1, 2, ...,𝑚.

Proof. The proof of the theorem is done by the mathematical induction with
respect to 𝑚. First, let 𝑚 = 0. Then,

𝐼 =
1∫︁

0

𝑃0(𝑥)
(︀
1− 𝑥2

)︀𝛼
𝑄(𝑥)

𝑑𝑥 = 0 +
1∫︁

0

𝑃0(𝑥)
(︀
1− 𝑥2

)︀𝛼
𝑄(𝑥)

𝑑𝑥

what is exactly the theorem for 𝑚 = 0.
Further, let us denote as 𝑇 (𝑛) the proposition of the theorem for 𝑚 = 𝑛 and

suppose that the theorem holds for 𝑛 > 0. Thus, it is necessary to prove the validity
of the theorem for 𝑚 = 𝑛+ 1.

According to the assumption of validity of 𝑇 (𝑛) it follows that

𝐼 =
1∫︁

0

𝑃0(𝑥)
(︀
1− 𝑥2

)︀𝛼
𝑄(𝑥)

𝑑𝑥 =
𝑛∑︁

𝑖=1

[︂
1

4(𝛼+ 𝑖)

(︂
𝑃𝑖−1(1)
𝑄(1)

− 𝑃𝑖−1(−1)
𝑄(−1)

)︂
+
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+
√
𝜋

4
Γ(𝛼+ 𝑖)

Γ(𝛼+ 𝑖+ 1/2)

(︂
𝑃𝑖−1(1)
𝑄(1)

+
𝑃𝑖−1(−1)
𝑄(−1)

)︂]︂
+

1∫︁
0

𝑃𝑛(𝑥)
𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑛
𝑑𝑥 =

= 𝐼∑︀,𝑛 + 𝐼𝑛, (13)

where

𝑃𝑖(𝑥) =
𝑃𝑖−1(𝑥)− (𝐴𝑖𝑥+𝐵𝑖)𝑄(𝑥)

1− 𝑥2
,

𝐴𝑖 =
1
2

(︂
𝑃𝑖−1(1)
𝑄(1)

− 𝑃𝑖−1(−1)
𝑄(−1)

)︂
, 𝐵𝑖 =

1
2

(︂
𝑃𝑖−1(1)
𝑄(1)

+
𝑃𝑖−1(−1)
𝑄(−1)

)︂
,

for all 𝑖 ∈ [1, 𝑛] and as 𝐼𝑛 we have denoted the integral part of (13). Further, integral
𝐼𝑛 in (13) can be written as follows

𝐼𝑛 =
1∫︁

0

𝑃𝑛(𝑥)
𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑛
𝑑𝑥 =

=
1∫︁

0

𝐴𝑥+𝐵

1− 𝑥2

(︀
1− 𝑥2

)︀𝛼+𝑛+1
𝑑𝑥+

1∫︁
0

𝑃𝑛+1(𝑥)
𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑛+1
𝑑𝑥, (14)

where 𝑃𝑛+1 is defined by the relation

𝑃𝑛(𝑥)
(1− 𝑥2)𝑄(𝑥)

=
𝐴𝑥+𝐵

1− 𝑥2
+
𝑃𝑛+1(𝑥)
𝑄(𝑥)

, (15)

therefore

𝑃𝑛+1(𝑥) =
𝑃𝑛(𝑥)− (𝐴𝑥+𝐵)𝑄(𝑥)

1− 𝑥2
(16)

with identities
𝑃𝑛(1)
𝑄(1)

= 𝐴+𝐵,
𝑃𝑛(−1)
𝑄(−1)

= −𝐴+𝐵. (17)

By solving the previous system of equations one obtains

𝐴 =
1
2

(︂
𝑃𝑛(1)
𝑄(1)

− 𝑃𝑛(−1)
𝑄(−1)

)︂
, 𝐵 =

1
2

(︂
𝑃𝑛(1)
𝑄(1)

+
𝑃𝑛(−1)
𝑄(−1)

)︂
(18)

and by insertion of 𝐴 and 𝐵 from (18) into (14) one obtains the following expression
for integral 𝐼𝑛

𝐼𝑛 = 𝐴

1∫︁
0

𝑥
(︀
1− 𝑥2

)︀𝛼+𝑛
𝑑𝑥+𝐵

1∫︁
0

(︀
1− 𝑥2

)︀𝛼+𝑛
𝑑𝑥+

1∫︁
0

𝑃𝑛+1(𝑥)
𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑛+1
𝑑𝑥 =

= 𝐴
1

2 (𝛼+ 𝑛+ 1)
+𝐵

√
𝜋

2
Γ(𝛼+ 𝑛+ 1)

Γ(𝛼+ 𝑛+ 3/2)
+

1∫︁
0

𝑃𝑛+1(𝑥)
𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑛+1
𝑑𝑥 =

=
1

4 (𝛼+ 𝑛+ 1)

(︂
𝑃𝑛(1)
𝑄(1)

− 𝑃𝑛(−1)
𝑄(−1)

)︂
+

+
√
𝜋

4
Γ(𝛼+ (𝑛+ 1))

Γ(𝛼+ (𝑛+ 1) + 1/2)

(︂
𝑃𝑛(1)
𝑄(1)

+
𝑃𝑛(−1)
𝑄(−1)

)︂
+

1∫︁
0

𝑃𝑛+1(𝑥)
𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑛+1
𝑑𝑥.
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Now, one can return to (13) and obtains

𝐼 = 𝐼∑︀
,𝑛

+ 𝐼𝑛 =

=

𝑛∑︁
𝑖=1

[︂
1

4(𝛼 + 𝑖)

(︂
𝑃𝑖−1(1)

𝑄(1)
− 𝑃𝑖−1(−1)

𝑄(−1)

)︂
+

√
𝜋

4

Γ(𝛼 + 𝑖)

Γ(𝛼 + 𝑖 + 1/2)

(︂
𝑃𝑖−1(1)

𝑄(1)
+

𝑃𝑖−1(−1)

𝑄(−1)

)︂]︂
+

+
1

4 (𝛼 + (𝑛 + 1))

(︂
𝑃𝑛(1)

𝑄(1)
− 𝑃𝑛(−1)

𝑄(−1)

)︂
+

√
𝜋

4

Γ(𝛼 + (𝑛 + 1))

Γ(𝛼 + (𝑛 + 1) + 1/2)

(︂
𝑃𝑛(1)

𝑄(1)
+

𝑃𝑛(−1)

𝑄(−1)

)︂
+

+

1∫︁
0

𝑃𝑛+1(𝑥)

𝑄(𝑥)

(︀
1− 𝑥2

)︀𝛼+𝑛+1
𝑑𝑥

⏟  ⏞  
𝐼𝑛+1

=

𝑛+1∑︁
𝑖=1

[︂
1

4(𝛼 + 𝑖)

(︂
𝑃𝑖−1(1)

𝑄(1)
− 𝑃𝑖−1(−1)

𝑄(−1)

)︂
+

+

√
𝜋

4

Γ(𝛼 + 𝑖)

Γ(𝛼 + 𝑖 + 1/2)

(︂
𝑃𝑖−1(1)

𝑄(1)
+

𝑃𝑖−1(−1)

𝑄(−1)

)︂]︂
+ 𝐼𝑛+1 =

= 𝐼∑︀
,𝑛+1

+ 𝐼𝑛+1. (19)

In the end, from (15), (18), and (19) follow that 𝑇 (𝑛+1) holds. What was necessary
to prove. �

The formula given in (11), which was proven in the previous theorem, allows one
to compute our integrals in the form of a sum of the Gamma functions, which can be
calculated exactly, and one integral which is convenient for integration with respect
to needed precision and computing time of calculations. It is clear that in our case,
𝑑 ∈ (2, 3], it is enough to put 𝑚 = 1 and the integral becomes more convenient for
integration, namely, the exponent 𝑝 in (1 − 𝑥2)𝑝 part of the integrand becomes a
positive real number and the integral can be simply calculated with the high precision
in a very short time by arbitrary numerical method of integration.

4. Scaling Regimes of the Model

Figure 1. Dependence of the borderline dimension 𝑑𝑐 on the parameters 𝛼1 and 𝛼2 for
𝑢* = 0 and 𝑢* = 1. The corresponding scaling regime is stable above the given surfaces

We have performed a numerical analysis of the system of differential flow equations
and we have found all possible fixed points which drive the corresponding scaling
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regimes of the model. The model exhibits five different scaling regimes. Two of them
correspond to the rapid-change model limit: one is trivial with 𝑔*/𝑢* = 0, 1/𝑢* = 0
which is stable for 𝜂 > 0 and 2𝜀 < 𝜂 and the second is non-trivial with 𝑔*/𝑢* >
0, 1/𝑢* = 0 which is stable for 𝜀 < 𝜂 and 2𝜀 > 𝜂. Two of the scaling regimes correspond
to the so-called ”frozen” limit: one is again trivial with 𝑔* = 0, 𝑢* = 0 which is stable
for 𝜀 < 0 and 𝜂 < 0 and the second is non-trivial with 𝑔* > 0, 𝑢* = 0 which is stable
for 𝜀 > 0 and 𝜀 > 𝜂. The last and the most interesting scaling regime corresponds
to the case with finite time correlations of velocity field and it is given by nonzero 𝑢*
and 𝑔* > 0 (see, e.g., [8] and references therein) which is stable for 𝜀 = 𝜂. Further, we
are interesting in the dependence of the so-called borderline dimension 𝑑𝑐 ∈ (2, 3] as
function of anisotropy parameters 𝛼1 and 𝛼2 under which the corresponding scaling
regime is unstable. Some results are shown in Fig. 1. One can see that the presence
of small-scale anisotropy leads to the violation of the stability of the corresponding
scaling regimes below 𝑑𝑐 ∈ [2, 3] for appropriate values of anisotropy parameters. But
from the point of view of further investigation of anomalous scaling of the correlation
functions of the advected vector field the most important conclusion is that all the
three-dimensional scaling regimes remain stable under influence of small-scale uniaxial
anisotropy.

5. Conclusions

Using the field theoretic RG we have studied the influence of small-scale uniaxial
anisotropy on the stability of the scaling regimes in the model of a passive vector
advected by given stochastic environment with finite time correlations. The existence
of five possible scaling regimes as functions of parameters 𝜀 and 𝜂 is briefly discussed.
It is shown that the stability of the scaling regimes under influence of small-scale
uniaxial anisotropy is driven by the system of five nonlinear differential flow equations
which contain angle integrals. The conditions for the convergence of the integrals are
found and one convenient method for their numerical calculation is found. It is shown
that the anisotropy does not disturbed the three-dimensional scaling regimes but the
two-dimensional scaling regimes could be destroyed by the small-scale anisotropy. The
results will be used in the further investigations of the anomalous scaling of the model.
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УДК 532, 517
Численное исследование уравнений ренормгруппы в

модели векторного поля адвектированного анизотропной
стохастической средой

Я. Буша *, Э. А. Айрян †, Э. Юрчишинова ‡, М. Юрчишин ‡, Р.
Ремецки ‡
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ул. Летна, д. 9, Кошице, Словакия, 04200
†Лаборатория информационных технологий

Объединённый институт ядерных исследований
Дубна, 141980, Россия

‡Институт экспериментальной физики
ул. Ватсонова, 47, САН, Кошице, Словакия 04001

Рассмотрено влияние сильной одноосевой маломасштабной анизотропии на стабиль-
ность скейлинговых режимов в инерционном интервале в модели пассивно адвектиро-
ваного поперечного векторного поля несжимаемым турбулентным потоком с использо-
ванием полево-теоретической ренормгруппы. Предполагается, что поле скоростей имеет
гауссовскую статистику с нулевым средним и с определённым шумом с конечными вре-
менными корреляциями. Показано, что скейлинговые режимы в инерционном интерва-
ле связаны с существованием стабильных инфракрасных неподвижных точек соответ-
ствующих уравнений ренормгруппы с определёнными угловыми интегралами. Приведён
анализ интегралов. Задача решена численно и граничные значения пространственной
размерности 𝑑𝑐 ∈ (2, 3], ниже которых скейлинговый режим нестабилен, найдены как
функции параметров анизотропии.

Ключевые слова: оптимальный скейлинг, пассивная адвенция, группа ренорми-
ровок.




