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Complexes of localized states are numerically analyzed in two dynamical systems: directly
driven nonlinear Schrédinger equation (NLS) and double sine-Gordon equation (2SG). Both
systems have a wide range of physical applications. Our numerical approach is based on the
numerical continuation with respect to the control parameters of the quiescent (stationary)
solutions and stability and bifurcation analysis of the linearized eigenvalue problem. Multi-
soliton complexes of the NLS equation are studied in the undamped and the weak damping
regimes. We show that in the weak damping case the directly driven NLS equation holds
stable and unstable multi-soliton complexes. The results are confirmed by means of direct
numerical simulations of the time-dependent NLS equation. Properties of the multi-fluxon
solutions of 2SG equation are studied depending on the parameter of the second harmonic. We
show that the second harmonic changes properties and increases the complexity of coexisting
static fluxons of 2SG equation. Results are discussed within the frame of the long Josephson
junction model.
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stability.

1. Introduction

We study complexes of localized states in two dynamical systems: externally-driven
nonlinear Schrodinger equation (NLS) and double sine-Gordon equation (2SG).

Both systems have undergone an extensive mathematical analysis because of their
wide range of physical applications.

In both cases, our numerical approach is based on numerical continuation of sta-
tionary solutions of respective partial differential equations and linearized eigenvalue
problems [1,2]. Numerical continuation algorithm is described in [1,3]. At each step
of numerical continuation, the Newtonian iteration with the 4th order accuracy Nu-
merov’s discretization is utilized. Our aim is a numerical study of

(i) multi-soliton complexes of ac-driven NLS in the case of weak damping;
(ii) multi-fluxon solutions of 2SG depending on the second harmonic.

2. Complexes in the Ac-Driven, Weakly Damped NLS

We consider the nonlinear Schrédinger equation (NLS) driven by a constant exter-

nal force
ihy + Pxx + 20 — ¢ = —h — iy, hx(+o0) =0, (1)

where v > 0 and h are, respectively, parameters of the damping strength and the
external driving. Two types of stationary soliton solutions of (1) (denoted v_ and
1y ) are well investigated [4]. Strongly damped (v > 0.5) stationary complexes of ¢_
and 1 solitons were obtained in [1,5]. Existence of stationary undamped complexes
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was proved in [5]. Also, travelling undamped waves and complexes were obtained
in [5,6]. Our aim is investigation of multi-soliton complexes in case of small damping
(0<vy<0.5)

Stationary localized solutions of (1) are pathfollowed in « for the fixed value h.
Stability and bifurcations of stationary solutions of (1) are classified by means of
numerical solution of the respective linearized eigenvalue problem, see [5]. At each
step of the numerical continuation, we calculate the energy integral as follows:

E= / dellthal? + [0 — [~ + %) — [ol? + [dol* + B (%o + ¥,

In [6], we obtained the undamped multi-soliton complex T5 (see Fig. la) which
was established to be continuable in v > 0 [7]. As we pathfollow T5 to nonzero ~ the
curve F(y) turns up to the branch of three-soliton complex ¢__), see Fig.1b. Both
branches on Fig.1b have been found to be unstable.

At the next step of numerical study we continued the strongly damped two-soliton
complexes obtained in [1], to v < 0.5. Since, in case v > 0.5, solitons of (1) de-
cay monotonically they cannot form bound states via the tail-overlap mechanism.
Nevertheless, we obtained three two-soliton complexes with different distances (or-
bits) between constituents: P1,(——)s V2,(——), ¥3,(——)- They are shown on Fig. 2 for
v =0.49, h = 0.35. As in the strong damping case, only v, (__) has been found to be
stable. Beside the stability analysis, these results were confirmed by means of direct
numerical simulations, see Fig. 3. As we continue complexes 15 (__y in the direction
~v < 0.49, the curve E(v) turns up into unstable branch of 4-soliton complex Vp——4)-
Continuing v, (—_y to v > 0.49 we obtain unstable complex of two 1) -solitons.
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Figure 1. h =0.05: (a) Complex T5 at v = 0; (b) Diagram E(v) obtained in
continuation of T5 to v >0

3. Double Sine-Gordon Equation: Effect of the 2nd Harmonic

The magnetic flux distributions in the case of a finite length overlap contact, satisfy
the double sine-Gordon equation:
" —¢g—ap=aysing+azsin2p—~y, t>0, ze (-1, ¢ (£lt)=h.. (3)
Here ¢ — magnetic flux distribution, h, — external magnetic field, v — external
current, o > 0 — dissipation coefficient, | — semilength of the junction, a; and ay —
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Figure 2. Two-soliton complexes v (__y, ¥ (—_), ¥3,(-—) at h = 0.35; v = 0.49
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Figure 3. Direct simulation of unstable complex 1;(__y (left) and stable
complex v, (__y (centre) at h = 0.35; v = 0.49. Right panel: Diagram E(v)
obtained in continuation of v, __). Stable branch is shown by solid line

parameters of contribution of the first and second harmonics in the current-phase
relation. Depending on the physical application, the sign of as can be positive or
negative. In this contribution, we consider only the case as < 0.

The static magnetic flux distributions are described by the following boundary
value problem:

—o" +arsinp+assin2p —y=0, z€ (=1, ¢ (£l)=he. (4)
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Stability analysis can be reduced to numerical solution of the Sturm—Liouville prob-
lem [8]:
+1

" ey = A, () =0, / (@) da = 1,

—1

(5)
q(x) = aj cos ¢ + 2ay cos 2¢p,

where the case A\g > 0 corresponds the stable solution ¢. Eqgs. (4), (5) are consid-
ered as the unified system with respect to unknown functions ¢(x), ¢(x), and one of
parameters [, a1, az, he,y. Putting A = 0 one can obtain critical regimes of (3).

During the numerical continuation we calculate two quantities to characterize so-
lutions:

— full magnetic flux Ay = ¢(I) — ¢(—1), and

l
— “number of fluxons” N = [1/(2im)] [¢(x) dz.
~1

Taking into account the second harmonic, i.e. introducing a nonzero as, changes
the properties of the standard static magnetic flux distributions and gives rise to
new (stable and unstable) static solutions [2,9-12]. We plot the normalized rate of
change of the magnetic flux Ap/27 versus the external magnetic field h. in Fig.4 to
demonstrate the connection between the coexisting stable and unstable solutions for
az = —0.7. Similarly to the case of ag = 0 [3] and a2=-0.5 [10], we plot two curves,
the first of which connects ®! (he = 0) with multi-fluxon states ¢~ with even

small
“number on fluxons” N and the other one connects @} (he = 0) with solutions ¢

large

with odd N. In addition we have found a short branch connecting ®! . and M,.
which didn’t exist in the case ao = 0 and as = —0.5. This branch is seen in details
on the right panel of Fig. 4. Stable and unstable solutions are plotted by solid and
dashed lines, respectively. Light circles indicate turning points; solid circles show the
points where stability changes.
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Figure 4. Diagram Ay/27(he) for az = —0.7, a1 =1, 21 =10, vy =0

Fig. 5 shows three coexisting solutions in case h, = 0 (left panel). Only constant
solution M, is stable here. When h, is growing, “small” and “large” fluxons stabilize
and complexity of coexisting solutions increases. Indeed, Fig. 5 (right panel) demon-
strates four stable multi-fluxon solutions coexisting at h, = 1.5 with two unstable
solutions ¢? and > (not plotted).
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Figure 5. Coexisting stationary solutions of (4) for a; = —0.7 a1 = 1, 2] = 10,
v=0 at he =0 (left) and h. = 1.5 (right)

4. Summary

Two dynamical systems (NLS and 2SG) have been investigated using the same
numerical approach based on numerical continuation of stationary solutions. We show
that in the weak damping case (7 < 0.5) (1) holds stable two-soliton complexes. We
also show the 2nd harmonic increases the complexity of coexisting static distributions
in the LJJs described by the 25SG equation.
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[IpoBeneHo YKC/IEHHOE UCCJIEIOBAHNE KOMILIEKCOB JIOKAJIM30BAHHBIX CTPYKTYP B JBYX JIU-
HAMMWYECKUX CUCTEMAX, KaxKJas U3 KOTOPBIX UMEET MHOXKECTBO (DU3UYECKUX IMPUJIOKEHUIA.
IlepBast cucrema onuchiBaeTCs HeJIMHERHBIM ypaBHenueM llIpenuHrepa ¢ BHEIIHEN HaAKaYKO
n muccumanuit (NLS), Bropast — ypasaerueMm mapoiiroro cunyc-Topmona (2SG). YucieHHbIit
aHa/ M3 B OOOMX CJIyYasiX OCHOBAH Ha IMPOJOJIKEHUU COOTBETCTBYIOIIMX CTAIIMOHAPHBIX pe-
MIEHW 110 MapaMeTpaM W YUCJEHHOM DPeIeHUM JIMHEAPU30BAaHHON 3aJa9u Ha COOCTBEHHBIE
3HAYEHUS JJIsl aHAJIu3a ycToiunBocTu u 6udypkanuit. Mynbrucomuronabie Komiiekcsl NLS
HCCIIELYIOTCS [T CIIydasi CJIaboi M HyseBoi jguccunaruu. Jjis mepBoil cuCTeMbl IPOJEMOH-
CTPUPOBAHO CYIIECTBOBAHUE YCTONYUBBIX M HEYCTOWYMUBBIX MYJIBTUCOJUTOHHBIX CTPYKTYD B
ciydae MaJioil Juccunanuy. JucjIeHHbIe Pe3yJIbTaThl, [I0JIyYeHHbIE HA OCHOBE BBIIIEU3JI0XKEH-
HOT'O TIOJXOJI&, TOATBEPKIAIOTC TIPSIMBIM YUCJEHHBIM PEIIEHNEM KCXOJHOIO YDABHEHUS B
YaCTHBIX MPOU3BOMHBIX. [IjIs1 BTOPOIT CHCTEMBI CBOMICTBA MYJILTUMIIIOKCOHHBIX perteHnit 25G
HCCJIEIOBAHBI B 3aBHCHUMOCTH OT I1IapaMeTpa BTOpoil rapmoHuku. IlokazaHo, 9ro yder BTO-
PO TADMOHMKHM NPUBOJUT K M3MEHEHUIO CBOWCTB MU3BECTHBIX PEIIEHUN U IOSBJIEHUI0 HOBBIX
COCYIIECTBYIOIMX (DIIIOKCOHHBIX COCTOsHUN. Pesynprarsl 06CyKAAI0TCS TPUMEHUTEIBHO K
MOJIEJTN JIJIMHHBIX J1K036(DCOHOBCKUX KOHTAKTOB.

KuroueBrbie cjioBa: COMUTOHBI, (DJIIOKCOHBI, HHIOTOHOBCKUE UTEPAINU, IUCJIEHHOE MPO-
JOJI2KeHHEe, yCTOMYNBOCTD.





