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A detailed investigation of the IVC breakpoint and the breakpoint region width gives
important information concerning the peculiarities of stacks with a finite number of intrinsic
Josephson junctions. The current-voltage characteristics for a stack of n Josephson junctions
is defined from solving the system of n nonlinear differential equations. The current voltage
characteristic has the shape of a hysteresis loop. On the back branch of the Hysteresis loop,
near the breakpoint I, voltage V(I) decreases to zero rapidly. The goal of this work is to
accelerate the computation of IVC based on numerical solution of the system. A numerical-
analytical method was proposed in. This method showed perfect results in IVC calculations
for a stack of 9 and 19 intrinsic Josephson junctions and the computation time reduced by
five times approximately. The question of choosing a change-over point from “analytical” to
numerical calculation was open. In testing computations the change-over point was taken
equal to 2I,. In the case of periodic boundary conditions an equation, determining the
approximate location of I, was obtained. This moment we succeeded to develop an algorithm
determining the approximate value I in more complicated technically case of non-periodic
boundary conditions with v = 1. All calculations were performed using the REDUCE 3.8
system.
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characteristics, hysteresis loop, Cauchy problem for a system of nonlinear differential equa-
tions, fourth-order Runge-Kutta method, long-time asymptotic formulas, a numerical-analytical
method, computation of formulas using the REDUCE 3.8 system.

1. Introduction

Solving the system

Y = Z Al’l/(I - sin(gpl/) — ,ngl/), = 1, ey ny (1)

=1

for different I : I = Iy + kATl < Inax; I = Inax — KAI, the current-voltage
characteristics of stacks as hysteresis loops are found [1]. For initial value of the
current (I = Ip) the system (1) is solved with zero initial data on an interval [0, Tiyax]-
For each next I : I = Ij41, found already ¢;(Ik, Timax), 91 (I, Tmax) are used as initial
data. On the back branch of the Hysteresis loop, near the breakpoint I, voltage V (I)
decreases to zero rapidly. The goal of this search is to accelerate the computation of

IVC.

In the case of periodic boundary conditions the A matrix is

1+ 2« —Q 0 0 —
-« 1+ 2« —Q 0 0
0 - 14+2a0 -« 0
DY DR DY DY DR . ’ (2)
0 0 —a 142« —Q
—« 0 0 -« 1+ 2«
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square matrix of order n. And in the case of nonperiodic boundary conditions the A
matrix is

I+a(l+y) -« 0 0 0
-« 1+ 2« -« 0 0
0 - 1+2a0 -« 0
.« e Y .« e .« e Y « .. ’ (3)
0 0 —a 142« -«
0 0 0 —a  1+a(l+7)

where v = s/sg = s/s, and s, Sg, s, are sickness of middle, first and last supercon-
ducting layers respectively [1]. The parameter « gives the coupling between junctions,
B is the dissipation parameter. The dynamics of phase differences ¢;(¢) had been
simulated by solving the equation system (2) using the fourth order Runge-Kutta
method [2]. After simulation of the phase differences dynamics the voltages on each
junction were calculated as

Opr/Ot =Y Ay Vi, (4)
=1
The average of the voltage V; is given by

Tn)ax
_ 1
‘/Z B Tmax - Tmin ‘/lat <5)

min

Finally the total voltage V of the stack is obtained by summing these averages:

V =
l

: (6)

~

n
=1

The calculation can be simplified using specific properties of the matrices (2), (3).
These matrices are symmetric. They have complete systems of orthonormal eigenvec-
tors E; with real eigenvalues \; . The fundamental matrices D (whose columns are
E;) reduce the A-matrices to the diagonal form: D’AD = A = diag (A1, A2, ..., \n).

After changing the variables

o= dipthy, Vi=>_ duyWe

I'=1 I'=1

we get a system:

= —NBYr+ N TS — N Z d i sin(epr),
=1
where [ =1,...,n and S; is the sum of Ej elements: S; =d;; +da;+ ...+ dp .
Relations (4), (5), (6) result in

% _ 17 7z}l(irmax) - wl(Tmin)
B AlWl’ VVl B )\Z(Tmax - Tmin)

o , V:;Sz-vvl (7)

respectively.
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2. Periodic Boundary Conditions

In the case of periodic boundary conditions, the eigenvalue problem of A has the
solution:

2r(l—1
A =1+ 2a(1 — cos(yy)), gpl:M, l=1,...,ns,;
n

where ns is integer part of (n+1)/2, ns = [(n+1)/2],
1 sin(¢r) cos(¢py)
. e - e sin(2¢;) . B \/5 cos(2¢;)

1 — \/ﬁ ) 2(1-1) — n ) 21-1 — n )
1 sin(ny;) cos(nyp)
[=2,...,ns.

When n is even, n = 2 - ns, matrix A has additional eigenvalue A\ 541 = 1 + 4a,
the corresponding ¢,,s11 = 7 and corresponding eigenvector is

1
E, = %[—1, 1,-1,1,...,—1,1]*.

So every of )\;, 2 < I < ns, has a pair of eigenvectors. Let me remind that S; is a sum
of E; elements. This time we have S =+/n, S;=0,l=2,...,n.

As a result, the hysteresis calculation problem is reduced [3] to solving the unique
equation

t

= 7(52700) —e M 4w 1 — e Pl sin(n(s))ds
n) =&+ e et o sin(n(s)ds.  (8)

0

Solving this equation we find 1 (t) = /nn(t). The rest components 1;(t), j =
2,...,n are equal zeros. The equation (8) is solved by the simple iterations method.
Starting from 19 = 0. we obtained at the third iteration step

B cos(¥) sin (1) cos(A +v)
w0~ (o= g t ma ) A
~ cos(2A+9) | sin(wt+ A+ 9 + atg)

1B N/

Here w = I/B, A= & + (€ — w)/B, atg = arctg(8/w), § = — cos(A)/(wB).
Remark that V(I,n) = /nWi(I) (see (7)) and

Wi(1) = Vr(n(I, Tiax) = (1, Tnin)) / (Tinax — Tinin)-

The approximate break point location w can be found [4] from (9) as a solution of
the equation F'(w) = 0, where

+ 0wt +e7PY. (9)

Flw) = sin( — atg)

Y e

N 2sin(w(Tmax — Tmin)/2) co8(w(Tmax + Tmin)/2 + A + 0 + atg)

w V ﬁ2 + WQ(Tmax - Tmin)
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Here A = —w/f3, according to &; = & = 0. The polynomial P(z) = 48%w*(w?+5%)—1
has the unique positive root xt = 1.35232. We find that F(zt) = 1.447... and
F(1) = —1.434.... After this no difficulty is to calculate the approximate break
point location using the interval bisection method, I;, = 0.210248. ... Roughly spiking
the jump to numerical calculations must be done at 2I,. In our calculations we put
Tmin = 50, Twax = 1000, AT = 0.05. The step in the Runge-Kutta method was
h = 0.1. All calculations were performed by using the REDUCE 3.8 system [5] .

3. Nonperiodic Boundary Conditions
In the case of nonperiodic with v = 1 boundary conditions, the A matrix has
ﬁollowiTrLl:g eigenvalues and eigenvectors: \; = 1+ 2a(l —cos(jv)),Y =7/(n+1), j=
E; = cnlsin(j9),sin(259),...,sin(njd)|", j=1,...,n, cn=+/2/(n+1).
For even j, j=2,4,...,2k<n,S; =0. And for odd j
S; =cnctg(j9/2), j=1,3,....2k—1<n

We proved [3] that in the case of non-periodic boundary conditions with v = 1 the
problem of Hysteresis loop calculation reduces to solving the following system of ns
integral equations:

62(21 — 1) — W2l—-1
BA2i-1

t
/ 1 —exp (—BAz-1(t — 5)) dezl 1 8in (de% 1925 1) ds,  (10)
0

m=1

Poi—1 = woy1t+&1(20—1) + (1 — exp(—BAg_1t))

Q\’—‘

where [ = 1,2,...,ns, ns is integer part of (n+ 1)/2 and wo;—1 = Soi—11/p.

For each I and given initial data &; (20 — 1), £&(20 — 1) the system (10) was solved
using simple iterations starting at zero. The results obtained after three iterations are
regarded as “asymptotics” of the solution for large t. These “asymptotics” were used
in [3].

In result of a number of useless attempts to find approximate breakpoint location
by analogy with [4], we concluded that this can be done as follows. It is sufficient
to calculate V(I) for different I,I = 0.5 — 0.05 - j, solving the system (10) with zero
initial data “analytically”, until Iy, satisfying V(1) - V(Ip + 0.05) < 0 was obtained.
Found Ij is taken for the approximate breakpoint location. In the case of the non-
periodic boundary conditions we succeeded to realize this algorithm only after refusing
a number of algebraic manipulations “eating” the time and leading to computing errors
accumulation as well. The calculating time decreased more than 9 times (against 5

declared in [3]). Below we present result of calculating I, = 0.3 for the stack 0f 19
Josephson junctions.

b :={{0.5,33.7167375273},{0.45,40.235725455},{0.4,63.5053115073},
{0.35,62.9218862448}, {0.3, - 0.0454510614144}}

In Fig. 1 the pictures of the back way of the hysteresis loop are shown. The solid
and dotted lines refer to numerical and “analytical” calculations respectively. In Fig. 2
the solid line is the same as in Fig. 1, while the circles on this line refer to calculation
performed by the following mixed numerical-analytical method. The right way of
the hysteresis loop and the back way on the interval 1.45 > I > 0.45 = 1.5 I, are
computed using the ”asymptotic” formulas. The rest points of the hysteresis loop are
computed numerically. The calculations were performed for @« = 0.2, = 0.2 using
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the REDUCE 3.8 system [5] with Tinin = 50, Tinax = 1000 and the step h = 0.1 was
chosen in the numerical calculations.

140 T T T T T T
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 1. The solid line refers to the back branch of the hysteresis loop for

n = 19, calculated numerically using the fourth order Runge-Kutta method.

The dotted line refers to the back branch of the hysteresis loop, calculated
“analytically” using the “asymptotic” formulas
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Figure 2. The solid line refers to the back branch of the hysteresis loop
calculated numerically for n = 19. The circles on this line refer to calculation
performed by the mixed analytical- numerical method: the whole right branch
of the hysteresis loop, together with the back branch at 1.45 > I > 0.45=1.5- 1,
have been computed using the “asymptotic” formulas. The points at
0.45 > I > 0.2 were computed numerically. The point (0.5,43.561...), marked in
Fig. 2 by the arrow, is the last point of the hysteresis loop calculated
“analytically”
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YIK 519.6
Pemenne npob6sieMbl BBIYUCIEHUS METJIN I'ICTepe3uca s
cucTteM JK03e(PCOHOBCKNX MEPEXOJ0B

C. . CeparokoBa

Jlabopamopus ur@OPMAYUUOHHBLT METHOA02UT
065edunénroill urncmumym AIEPHLIL UCCAEA0BAHUL
ya. 2Koauvo-Kropu, 0. 6, ybrna, Mockosckas obaacmo, Poccus, 141980

JleranbHoe uccaeaoBanne KpuTudeckux Todek BAX u onenka 00J1aCTU X BJIUSHUS TIPEJI-
CTaBJIAIOT OOJIBIION MHTEPEC /IS U3y YEHUS CBOMCTB CUCTEM C KOHEYHBIM YHMCJIOM BHYTPEHHUX
J12K03e(DCOHOBCKUX TIEPEXOJIOB. BosibT-aMIiepHast XapaKTEPUCTUKA JIJI CUCTEMBI N BHYTPEH-
HUX J?K03e(PCOHOBCKUX IIEPEXO/IOB OIPEJIEISAIACH IO PEITEHUIO CUCTEMbBI 1 HEJIMHEHHBIX -
depernmanbHBIX ypasHeHuii. Bosbr-amnepaas xapakrepuctuka (cokpaménao BAX) umeer
BHUJI TIET/I TUCTepe3uca. Ha oOpaTHON BETBU IMETJIM TMCTEPE3NCA, MPU IOAX0/Ae K TOUKE H3-
goma I, nanpsikerne V (I) pesko cnagaer k Hymo. Lleab 9T0#t paboThl — yCKOPHTB TIPOIECC
Boraucaennsa BAX, oCHOBAHHBIN HA YMCIEHHOM PEIIEHUN CUCTEMBI. BBI IPEIJIosKEH CMEIIaH-
HBIH YUCJIEHHO-aHAJTUTUIECKUI aJITOPUTM. DTOT METO/T TOKA3aJI TPEKPACHBIE PE3YILTATHI TPU
Berunciieann BAX myst cucrem 9 u 19 BHyTpeHHUX J13K03e(PCOHOBCKUX T€pexoioB. [1pu sTom
BpeMsl CUeTa 110 CMEIIaHHOMY METO/Y COKPATHUJIOCH NPUOIU3UTENHHO B ITh pa3. OcraBasics
OTKPBITBIM BOIIPOC BHIOOPA TOYKHU IEPEXOJA OT «aHAJIUTUIECKOIO» cYeTa K Jucjaennomy. [Ipu
TECTOBBIX PacUYE€Tax TOYKA Iepexo/ia IPUHUMaJIachk paBHoil 21. B cirydae nepuoindeckux rpa-
HUYHBIX YCJIOBHI OBLIO MOJIyYEeHO YPaBHEHME, OIpe/ielIsiioliee TpudnKenHoe 3uadenune [,. B
HACTOSIINN MOMEHT YJIaJIOCh PAa3pabOTaTh aJrOPUTM, ONPEIESIAIONINN TPUOINKEHHOe 3HATe-
Hue I, B 6oJiee CJIIOXKHOM TEXHUYECKHU CIydae HEepUOJMYECKUX I'DAaHUIHBIX ycjioBuii. Bce
BBIYMCJIEHNS TPOU3BOIUINCE ¢ ucnob3oBanueM cucreMbl REDUCE 3.8.

KurodeBbie cjioBa: cucrema J1xKo3epCOHOBCKUX MEPEX0I0B, BEIYUCIEHIE BOJIbT-aMIIEPHBIX
XapaKTEePUCTHUK, TeT/Isd TUCTEePe3uca, 3ajada Kommm st cucreM HEJWHEHHBIX auddepeHIm-
aJbHBIX ypaBHeHUi, MeTos Pynre—KyTra 4eTBEPTOrO MOpsijIKa TOYHOCTH, ACUMIITOTUIECKUE
dopmyssl perennst 3agaan Ko npu 6obux ¢, 9MCAEHHO-aHAJIUTUIECKUHA METOJT, BHIUKUC-
snennss BAX, BbIBOJI acuMnToTudeckux (opmyii, ucnosbdys cucremy REDUCE 3.8.





