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In adiabatic representation the multichannel scattering problem for a multidimensional
Schrodinger equation is reduced to the boundary value problem (BVP) for a system of cou-
pled self-adjoined second-order ordinary differential equations on a finite interval with homo-
geneous boundary conditions of the third type at the left and right boundary points in the
framework of the Kantorovich method using adiabatic basis of surface functions depending
on longitudinal variable as a parameter. The homogeneous third-type boundary conditions
for the desirable wave functions of the BVP are formulated using the known set of linear
independent regular and irregular asymptotic solutions in the open channels of the reduced
multichannel scattering problem on an axis which involve the desirable reflection and trans-
mission amplitude matrices, and the set of linear independent regular asymptotic solutions
in the closed channels. The economical and stable algorithm for numerical calculation with
given accuracy of reflection and transmission matrices, and the corresponding wave func-
tions of the multichannel scattering problem for the system of equations containing potential
matrix elements and first-derivative coupling terms is proposed using high-order accuracy
approximations of the finite element method (FEM). The efficiency of the proposed algo-
rithm is demonstrated by solving of the two-dimensional quantum transmittance problem for
a pair of coupled particles with oscillator interaction potentials penetrating through repulsive
Coulomb-type potentials and scattering problem of electron in a Coulomb field of proton and
in the homogeneous magnetic field in the framework of the Kantorovich and Galerkin-type
methods and studying their convergence.
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1. Introduction

In the adiabatic representation [1] the multichannel scattering problem for a mul-
tidimensional Schrodinger equation describing three-dimensional tunneling of a di-
atomic molecule incident upon a potential barrier [2], fission model of collision of
heavy ions [3] or Coulomb scattering with transversal confinement produced by uni-
form magnetic field or channeling ions in crystal [4-6] is reduced by separating the
longitudinal coordinate, labeled as z, from the transversal variables to the boundary
value problem (BVP) for a system of self-adjoined second-order ordinary differen-
tial equations containing the potential matrix elements and first-derivative coupling
terms. Such reduction of the problem is performed in the framework of the Kan-
torovich method [7] using basis of surface eigenfunctions by transversal variables of
auxiliary BVP depended on the longitudinal variable as a parameter [8]. In order
to guarantee high-order accuracy of numerical solution the BVP the relevant po-
tential matrix elements should be evaluated with the same level of accuracy as the
approximate solutions. The corresponding algorithms of numerical solution with given
accuracy for the parametric two-dimensional boundary-value problem and calculation
of the solution derivative with respect to the parameter and the matrix elements using
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the finite-element method (FEM) [9-11] have been elaborated [8]. The variable coeffi-
cients of the ordinary differential equations and the corresponding solutions can have a
long-range asymptotic behavior by inverse powers of the independent variable. In this
case to reduce the problem to the finite interval of integration the new algorithm for
evaluation of asymptotic expansions of desirable solutions, in series by inverse powers
of the independent variable based on using an appropriate etalon equation has been
elaborated [12]. For problems similar to the penetration of composite system through
the long-range repulsive barrier potentials, solving the auxiliary BVP depended on
the center mass variable as a parameter is rather complicate problem [13]. In this case
we will include the barrier potentials after averaging over basis of surface paramet-
ric eigenfunctions of composite system as additional potential matrix into the systems
of coupled self-adjoined differential equations with respect to center mass variable
derived in the framework of the Kantorovich method. Preliminary we studied this
problem using averaging barrier potentials over the basis of surface eigenfunctions of
the Galerkin-type method [14,15]. Thus, to solve the above problems we need to for-
mulate an appropriate BVP and develop method, algorithms and software together
with benchmark calculations which will reveal specific features of realization of the
Kantorovich and Galerkin-type methods and their combinations.

The purpose of this paper is to present a suitable formulation of the multichannel
scattering problem for a multidimensional Schrodinger equation based on the Kan-
torovich and Galerkin-type methods implemented as an economical and stable algo-
rithm based on high-order accuracy approximations of the boundary value problem
using the FEM. The third-type boundary conditions are formulated for the consid-
ered scattering problem with respect to the desirable wave functions, reflection and
transmission matrices by using the known set of linear independent asymptotic reg-
ular and irregular solutions in the open channels, and the set of linear independent
regular asymptotic solutions in the closed channels, respectively. An essential part
of the resulting algorithm consists in economical formulations of nonhomogenous al-
gebraic problems using the matrices of logarithmic derivatives of asymptotic regular
solution at one boundary point and the matrices of logarithmic derivatives of the so-
lution calculated in the finite interval at another boundary point used to determine
the reflection matrix. As a benchmark calculation, the algorithm implemented in the
form program KANTBP 3.0 [16] is applied to computing the transmission coefficient
for the 2D-model of a pair of particles, coupled by the oscillator interaction potential,
describing the penetration through symmetric or nonsymmetric barriers, as well as
the long-range repulsive truncated Coulomb [13] and Coulomb like barriers [12], and
the Coulomb scattering with the transversal confinement oscillator potential produced
by uniform magnetic field [4].

The paper is organized as follows. In Section 2 we give a brief overview of the
problem. In section 3 the nonhomogeneous algebraic problem using FEM is formu-
lated. In section 4 the description of the auxiliary algorithm for the calculation of
linear independent asymptotic regular and irregular solutions in open channels, and
linear independent regular asymptotic solutions in closed channels is given. In section
5 the benchmark calculations of penetration coefficient and analysis of convergence
within the framework of Kantorovich and Galerkin-type methods are presented. In
conclusion a brief summary is given and further applications are described.

2. Statement of the Problem

A wide class of quantum-mechanical problems are reduced to the solution of mul-
tidimensional Schrodinger equation for the wave function ¥(r, z):

1 0 9 1
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Here L(x;z) = —A2 4+ U(z, z) is a self-adjoin elliptic differential operator with partial
derivatives in a finite region X ¢ RY | 2 = {z; }?,:_11 € X is a set of independent (fast)
variables, 2 € (Zmin, Zmax) € B C R is independent (slow) variable, X = BoX c RY

is a finite region of configuration space Rd,; F is a spectral parameter, corresponding
to the energy of a quantum system. It is assumed that the functions fi(z) > 0,
fa(2) >0, fa(z) >0, 0,f2(2), U(z,z) and 0,U(z,x) are continuous and bounded for
all (z,x) € X. It is also assumed that the self-adjoin operator L(z;z) for each value

of 2 € (21 = Zmin, 22 = Zmax) € B C R! has only a discrete real spectrum e(z).

The solutions ¥(z,z) € La(X) of Eq. (1) are subject to the boundary conditions
of the third kind

i%f)\i@(z,x):(), 2=z, z€dXUX,
g (2)

a% —b(2)¥(z,2) =0, z€ GX, Z € [Zmins Zmax|,

where p1, pa, a are real constants; \; = \;(z;) are real functions depending on z;;
p? 4+ A7 # 0; b(z) and 9,b(z) are continuous and bounded functions; a® + b(2) # 0; n
is unit vector normal to the bounds 0X of domain X.

In Kantorovich method [7] the partial wave function ¥;(r, x) sought in the form of
an expansion over the set of the one-parameter basic functions{y;(z; z)}_, € F. ~

LQ(X):

N
Uiz,2) = 3 (o 2x(2). (3)

In the expansion (3) the functions {Xy)(z)};v:l are unknown. The basis functions
{0 (z; z)}ﬁi1 are defined as parametric solutions of the eigenvalue problem
Lx; 2);(x; 2) = €(2)5(; 2),
j(x; z)

aT —b(2)¢j(z;2) =0, =xe€ 8X, Z € [Zmin; Zmax)-

Here 1(2) < -+ < en(z) < -+ € €(2) is the set of the desired N real-valued eigen-
values, arranged in the ascending order. The basis functions {1;(x;2)};L, form

(4)

an orthonormal basis for a set of variables x = {xj}?,:_ll € X for each value of

2 € (Zmins Zmax) € B, which is regarded as a parameter. The basis functions sat-
isfy the orthogonality and normalization conditions

(wtesafistas2)) = [ vilaso e aa? = =5, )

where 6;; is the Kronecker symbol.

Substituting the expansion (3) in Eq. (1) and averaging over the orthogonal basis
(4), (5), the multidimensional Schrédinger equation is reduced to a finite set of N
ordinary second-order differential equations on the finite interval [zmin, Zmax] for the

partial solution x)(2) = <X§j)(z), e X%)(z))T
(D—2ET) xY(2) = <—1 fltz) % fQ(z)% +V(z) +
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B d 1 dA()Qe) D
fl(Z)Q(Z P + ") e 2F I> x(z) =0. (6)
Here I, V(z) and Q(z) are the unit, symmetric and antisymmetric N x N matrices:
_ci@) +ei) s fle) g R
Vi (Z) = 2f3(z; 61] + fl(z> Hz] (Z), Li; = 6”7

Hi;j(z) = Hji(2) = <8¢ia(j;z)

0z
0V (z; 2) >
0z .

0 (x; z)> ’

Qmaz—QM@=—<wmm>

The basis functions {1;(x;2)};_, form an orthonormal basis, and on the bound-
aries of the interval z € [Zpin, Zmax) the following conditions are satisfied:

i 8‘1’1 Z, T
FORALCL))

(wstai ) |l 22

- )\l(i) \Ili(z,x)> =0, z=z, (8)

x

from which the uniform matrix boundary conditions of the third type follow
i) (4 i i) (i
@>O@—Q@0fNa—%&“m=m z=2. (9)
We assume that V(z) and Q(z) matrices have the following asymptotic behaviour at
large z = 24+ — +o00
,U(ld:) (1,%)

275 ij d;;
Vij(zx) = <€j + zi) 8ij+ ) ;QE o Quz) = T (10)
=2

=1 “F
where €; < ... < ey are the threshold energy values.
In the present work a scattering problem is solved using the boundary conditions
at 2 = zZmin and 2 = Zpax:
d®(z)
dz

d®(z)
dz

= R(Zmin)(I)(Zmin)7

Z=Zmin

= R(Zmax)q)(zmax)v (11)

Z=Zmax

where R(z) is an unknown N x N matrix function, ®(z) = {x/) (z)}j\fz"1 is the required
N x N, matrix solution and N, is the number of open channels, N, = maxag>.; j < N.

From this we obtain the quadratic functional (similar to Eq. (23) in [17] and Eq.
(5) in [18])

E(®, E, Zmin, Zmax) = / <I>T(z) (D —2E1) ®(2)dz = II(®, E, Zmin, Zmax)—
- f2(Zmax)q)T(Zmax)G(Zmax)(I)(Zmax) + f2(Zmin)q)T(Zmin)G(zmin)Q(zmin)v (12)

where II(®, E, Ziin, Zmax) is the symmetric functional

H(Qan Zmingzmax) = fQ(Z)

Zmin

d®’ (2) d®(2)
dz dz

+ fi(2) @7 (2)V(2)®(2) +
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+f2(2)2"(2)Q(2)

d®(z)

PP

Ol

Q(2)®(2) — f1(2)2E®T (2)®(2)| dz, (13)

and G(z) = R(z) — Q(z) is a N x N matrix function which should be symmetric
according to the conventional R-matrix theory [19].

2.1.

The matrix solution ®,(z)

The Physical Scattering Asymptotic Forms of Solutions in
Longitudinal Coordinates and the Scattering Matrix

®(z) describing the incidence of the particle and its

scattering, which has the asymptotic form “incident wave + outgoing waves” (see Fig.
la), is

XH ()T, 2> 0,
X (2) + X ()R, 2<0 v
®y(z = Fo0) = { X (2) + XB(2)R,, 2> 0, — .
v = s
X ()T, z2 <0,

where R, and T, are the reflection and transmission N, x N, matrices, v =— and
v =< denote the initial direction of the particle motion along the z axis. Here the

leading term of the asymptotic rectangular matrix functions X(i)(z) has the form
[20,21]

X}f)(z) — D 2 exp (iz (pjz - p*] 1D(2Pj|z|)>> 0ij,

j (15)
pj:\/QE—Ej izl,...,N, jzl,...,No,
Wherer:Z;r at z>0and Z; = Z; at z <O0.

D, (z > o) D _(z—> 1) o, (z > +£x) (1\)<—(Z — to0)
XP(z) XOGz)  XOT) |XO@R,  XOR. [ XO@)T.
«-— > «— ——»

XO@R, | XP)T, XO@T_ | XD ()R, XP(z)  X(2)
z<0 z>0 z<0 z>0 z<0 z>0 z<0 z>0

(a) (b)
Figure 1. Schematic diagrams of the continuum spectrum waves having the
asymptotic form: (a) “incident wave + outgoing waves”, (b) “incident waves +
outgoing wave”
The matrix solution ®,(z, F') is normalized by the condition
o0
/ @', (2, B)®,(2, E) f1(2)dz = 276(E' — E)8yy1o0,

—0o0

(16)

where I,, is the unit N, x N, matrix. Let us rewrite Eq. (14) in the matrix form at
zy — +o0o0 and z_ — —00 as

(270

0

iif;) - <X<+>(Z) y

X (zy)
0 - ) + (X(_)(z> S, (17)

X<+(>)<Z+>>
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where the scattering matrix S

S = (1;: IT{: ) (18)
is composed of the reflection and transmission matrices.
It should be noted that the functions X(i)(z) satisfy the relations
Wr(Q(2); X (2), X (2)) = £21L,0, Wr(Q(2); XF(2),XH)(2)) =0,  (19)

where Wr(e;a(z),b(2)) is the generalized Wronskian with the long derivative defined
as

Wr(e;a(2),b(2)) = a”(z) (d'z(;) - .b(,z)> - (d.z(z) - .a(z)>Tb(z). (20)

y4

This Wronskian is used to estimate the desirable accuracy of the above expansion.

Let us prove that the scattering matriz (18) is symmetric and unitary. Using Egs.
(14) and (19), we arrive at the following relations

) +20TT, T, 2> 0,
Wr(Q(e): ®5.(2). ®-(2)) =3 o1, ~RLR,), 2<0
00 — ) ’

—2TL T, z <0,

Wr(Q(2); (2), P (2)) ~2(I, —RI R.), 23>0,

+2TL R,  2>0,

Wr(Q(2); ®%,(2), @ (2)) —uRI,T., 2<0,

+2RI T, 2> 0,

Wr(Q(); @ (2):2-(2)) =Y ot r,. <o,

(21)

—QZTi, z >0,

Wr(Q(2); ®_,(2), 2. (2)) 0T, z <0,

+0, z >0,

Wr(Q(2); @ (2), 2 (2)) +2RT -R,), z2<0,

— —— ——

—u(RT —R.), 2>0,

Wr(Q(2); @ (2), ®(2)) = +0, z <0,

where the asterisk denotes complex conjugation. From here, we obtain the following
properties of the reflection and transmission matrices:

T T,+R.,R,=1,=TI T_ +RI R_,
TLR_.+R.T_=0=RI T, +TI R_,, (22)
™ =T_, RL=R.,, RI =R_.
This means that the scattering matrix (18) is symmetric and unitary.

Another type of the matrix solution ®,(z) = ®(z) describing the incidence of the
particle and its scattering, which has the inverse asymptotic form “incident waves +
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outgoing wave” (see Fig. 1b), is

X (2) + X (2)RE, 2> 0, .
. v=
. X ()T, 2<0, ’
®,(z = +to0) = X ()T I (23)
v T, v=¢.
X (2) + XH(2)RE, z<0,

Note, that the equahty b 2(2) = ®<(2) should be valid from which we obtain

R_> =R._, R<_ =R_,, T, = T,. Therefore we consider below only matrix-solution
®,(2).

2.2. Calculation of Matrices G(zmax) at v =— and G(zyin) at v =«

Suppose that the set of linear independent regular square-solutions ®;°®(z)
{Xﬁé;( Y j=1 for the problem under consideration with the components Xﬁég( ) =

(XA (2)s o XN (2 2))T is known at z > 0, v =— and at z < 0, v =<, i.e.,

& (z) =X (2), 2>0, @) =X (2), z<0,
o (£) _ (D) . .
X (2)=X;;7(2), i=1,...,N, j=1,...,N,.

If some channels are closed, we should use additional linear independent regular as-
ymptotic functions at z > 0 and z < 0, respectively:

- Vs
X»(»i)z — fl/zex F 2+ —L 1n(2¢g;|2 0;i,

i (2) = g p Gt (252 J (24)
g =1/, —2E, i=1,...,N, j=N,+1,...,N.

In this case the matrix G(z) at z = zmax > 0, v =— or at z = zyin < 0, v =< can be
expressed via the known set of linear independent regular solutions ®;°%(z)

G(2) = R(:) - Q) = P (@152 - Qea) (25)

The matrix G(z) at z = zmyin, v =+ and at z = zpax, v =— will be used in the next
sections.

3. Formulation of the Algebraic Problem using the FEM

Computational schemes having high order of accuracy for the solution of the mul-
tichannel scattering problem (6)—(11) at a fixed value of energy E in open channels are
derived from the variational functional (12), (13) on the basis of the FEM. The gen-
eral idea of the FEM in one-dimensional space is to divide the interval [zmin, Zmax] into
many small domains referred as elements. The size of elements can be defined very
freely so that the physical properties or qualitative behavior of the desired solutions
can be taken into account.

The interval A = [zmin, Zmax] is covered by a system of n subintervals A; =
J
[2j-1,2;] in such a way that A = [J;_; A;. In each subinterval A; the nodes
B
Zf,r =2zj-1+ ;JT, hj=zj—zj-1, 7=0,p, (26)
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and the Lagrange elements {goﬁ.”r(z)}f _, of the order p
? (2 —2j;)
@)= 11 25 (27)

for the approximated function are determined. Using the Lagrange interpolation ele-
ments ¢¥ (z), we define the set of local functions Ni(z) as follows:

( ()0}10,0(2)7 z € Ay, =0

O, z € Al, -
p
ol (2), z€ A, )
NP(z) = ¢ o(2),  z €A, (28)

Whi10(2)s 2 €Ay, l=jp,j=Tn—1,
0, V4 QAJ'UAJ'+1,
Pho(2), €A .
0, 2 A, = np

The functions { N} (z)}lLZO, L = np form a basis in the space of the piecewise polyno-

mials of the (p+ 1)-th order. Now, each component of the vector functions x(i")(z) €
H'(Qy.) is approximated by a finite sum of local functions N7 (z)

L

X () = D () NP (=), (29)

=0

i.e. the vector function x(*)(z) has a generalized first-order partial derivative and
belongs to the Sobolev space H! () [9].

After substituting the expansion (29) into the variational functional (12), (13) the
solution of the multichannel scattering problem (6)—(11) at a fixed value of energy E
in open channels similar to [17] is reduced to the solution of the algebraic problem

with respect to the matrix solution ®" = ((xM)",..., (x(Vo))h):
GP®" = (AP — 2B BP)®" = (MP,, — MP,. ) ®", (30)
which subjects to the boundary conditions
de"
dZ(Z) = (G(Z) + Q(Z))@h(z)v Z = Zmin, Z = Zmax- (31)

Here AP and BP are symmetric (L N)x (L N) matrices, L is the number of the nodes of
the finite element grid on the interval [Zmin, Zmax], ME . and MP . are (LN) x (L N)
matrices with zero elements except the right-lower and left-upper N x N matrices
equal to f2(Zmax)G(Zmax) and fa(2Zmin)G(2min), respectively, G(z) = R(z) — Q(z) is
the NV x N matrix function, AP is the stiffness matrix; BP? is the positive definite mass
matrix; (X(io))h is the vector approximating the solution on the finite-element grid.
The matrices AP and B? have the following form:

A=Y B =YW (32)
7j=1
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the local matrices aﬁ-’ and b? are calculated as

+1

4 de? () det .

@) = {1 D 11, (20 )
el

d Pr dP hs
+ 2 @) D - 20, 00 o) an, (@

+1
r h;
O =80 [ A (), () (34)
21

z=2zj-1+ 05hj(1 + 77), q,r = @

In particular, the integrals (34) are evaluated using the Gaussian quadrature. Note,
that in this approach maximum value of the half-band of the matrices AP and BP? is
small compared to their dimension and is not greater than N(p + 1).

Let D(z) be a continuous and bounded positively defined operator in the space
H' with the energy norm, x(V(z) € H? are the exact solutions of Eqs. (6)-(11),

and (x)"(z) € H' are the corresponding numerical solutions. Then the following
estimates are valid [9]:

X (z) = (x)"llo < eh?',e >0, (35)

where || x(2)|12 = [7 dz(x¥(2))Tx(2), h is the grid step, (p+ 1) is the order of

Zmin
finite elements, ¢ is the number of the corresponding eigensolution, and the constant
¢ does not depend on the step h.

3.1. Calculation of the Matrix Solution ®,(z)

First, we consider the numerical algorithm for calculating the matrix solution ®" =
‘I>fl_. In this case Eq. (30) can be rewritten in the following form

PH? Gaa Gab P
oo ()= (S S5 (5)-
3 G G \@"

0o 0 3
— fQ(Zmax) (0 G(Zmax)> <@Z> . (36)
Here GP and MP?

P i are the matrices determined in accordance with Eqgs. (30), (31)
and (25), while G(2zpax) is the unknown matrix of the dimension N x N and ®¢ and

<I>i = @, (zmax) are the required matrix solutions of the dimension (LN — N) x N,
and N x N,, respectively. From here, we obtain the explicit expressions

oL = _(Gg)_lG(qu)ia G(2max) = f{l(zmaz)(c’l& - GZL(GLE)_IGG:)- (37)
From Eqs. (31) and (37) we can obtain the relation between ®° and its derivative

d®b b
dz R(Zmax) P R(Zmax) = G(2max) + Q(2max)- (38)
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Note, that the matrix G(zmax) is determined via the inverse of the submatrix G?%*
calculation that requires substantial computer resources. For evaluating Eq. (38)
without such calculation of the inverse submatrix G¢¢, let us consider the following
auxiliary system of nonhomogeneous algebraic equations

G G‘Lb F 0
Gi’f Gi’f Ff_ = fQ(Zmaz) < I ) . (39)

The problem (39) is solved with the help of LDL? -factorization of the stiffness matrix
and the back substitution method [22]. As the determinant of the matrix G? + M? .|
is nonzero, the above equation has a unique solution

—1
F[L = _(Gia)ilGaebeea Fbe = fQ(Zmam) <Gl£ - Gb:(Gaea)lG(ﬁ;> . (40)
Taking this into account, the required R(zmax) matrix is equal to

-1
R(zmax) = (F?—) + Q(zmax)’ (41)
and the required solution ‘1>}f_ is calculated by the formulae (37) and (40)
e =F (FL) @, & =X (o) + XD (zma) R (42)

Using the calculated R(zmax) from Eq. (41) and Eq. (14) for the asymptotic solu-
tion with the unknown reflection R, and transmission T. matrices, we obtain the
following matrix equations for their calculation:

Y<(_+) (ZmaX)R«— = _Y<(:) (Zmax)a X(i)(zmin)Te = (I)?_(Zmin)a

B dX(i)(z)

(43)
Y(::) (ZmaX) = dz

- R(Zmax)X(i) (Zmax)-

Z=Zmax

Note, that when some channels are closed, Y{*) () and X (=) (2) are rectangular N x N,

matrices. Therefore, using the pseudoinverse matrices of Y{*)(z) and X(-)(2), we
obtain the following expressions:

R.=- YSj)(zmaX) TYEj)(Zmax) B Y<(—+)(Zma><) TYt)(zmaX)a
() ¥ (00 .

T = ((X()(Zmin)>TX()(Zmin)>_1 (X(i)(zmin))T {)Z(Zmin)‘

Now we proceed to a brief description of the calculational scheme for the matrix
solution ®" = @Z. The required R(zmin) matrix is equal to

R(2min) = (Fa—>)_1 + Q(2min); (45)
and the required solution ®”, is calculated as
@: = F: (F:)_l 7, 7, = X(+)(Zmin) + X(_)(Zmin)R—>~ (46)

Here ®%, = ®_, (z1nin) and ‘I>b_> are the matrix solutions of the dimension N x N, and
(LN —N)xN,. F%, and F°, are the matrices of dimension N x N and (LN —N) x N,
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which are solutions of the auxiliary system of nonhomogeneous algebraic equations

Fe, G G Fe, I
(Gp—anax) ( Fb_) ) = ( Glf G% ) ( Fb_> ) = _fQ(Zmin)< 0 ) . (47)

Finally, using the calculated R(zmin) from Eq. (45) and Eq. (14) we obtain the
following matrix equations for calculating the reflection R_, and transmission T_,
matrices

Y(_:)(Zmin)R% = —Y(_Jf) (Zmin)7 X(+) (Zmax)T—> = q)i(zmax)a
dXF)(2)

Y(_jf) (#min) = dz

- R(zmin)X(i) (Zmin)-

Z=Zmin

The reflection R_, and transmission T_, matrices are evaluated using the pseudoin-
verse matrices of Y (zmin) and X (2pax)

Ry = — (YO o)) Y o)) (Y5 o)) Y (o)
(05 ) ¥ ) (1) .

T, = <(X(+)(2max))T X(+)(Zmax)> (X(+)(ZmaX))T {)i(zmaX)'

4. Algorithm for Calculating the Asymptotic Forms of
Regular and Irregular Solutions in the Longitudinal
Coordinate

We calculate the asymptotic solution of a set of IV coupled ordinary differential
equations (ODE) at large values of independent variable |z| > 1 for the particular
case when f1(z) = fa(2) = 2471

1 d , ,d
(_Zdl @Zd 1@ + ‘/”(Z> — 2E> X’ii’(’z) =
N

= - Z <V;J(Z) + Q”(Z)di 1 d Zd_lQij(2)> in/<2). (49)

d—1
z z dZ
j=1,j#i

We assume that the coefficients of Egs. (49) can be represented in the general asymp-
totic form as

i vy QW

=1

Usually in the case d = 2, 3, ... the asymptotic solution is calculated in one interval
Zmax < 2 < 400. In the case d = 1 the asymptotic solution is calculated in two
intervals —0o < z < Zmin and zZpmax < 2 < 400, where, in the general case, the

coefficients 6;1), Vig-l) and Qgé) are different for z > 0 and z < 0. Below we will consider
only the case z > 0.
Step 1. We construct the solution of Egs. (49) in the form:

dRi/ (Z)
dz

Xjir(2) = ¢jir(2) Rir (2) + jir (2) (51)



104 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 2, 2014. Pp.93-114

where ¢;i/(z) and 1j;(z) are unknown functions, Ry (z) is a known function. We
choose R;/(z) as the solutions of the auxiliary problem treated like an etalon equation

(Zi(/k<1) _ Zi(,k>k;nax) _ 0):

1 d q  fmex Z()
= 1dzzd o Z b | Ru(z) =0, (52)
k=1

Remark 1. If Zi(,k>3) = 0, then the solutions of the last equation are expressed in
terms of the hypergeometric functions, exponential, trigonometric, Bessel, Coulomb
functions, etc. For example, if the leading terms of the asymptotic solutions are given
by the a formula

Ry(2) = ———exp (j:z <pi/z - i 1n(2p,|z)>> , (53)

pir 24 i

the coefficients of potential in the etalon equation (52) have the form:

d-3)d-1)  Zy Z}

ZV =2z, z®-_ W=D, i (54)

4 b D

Step 2. At this step we compute the coefficients ¢,/ (z) and 1;/(z) of the expan-
sion (51) in the form of a series over the inverse powers of z:

kmax ('k"‘,/) kmax w(k//)
bjir(2) = Z ZJ;/ o Y (z) = Z ZJ;/ ~ (55)
k=0 k=0
After the substitution of Eqgs. (51), (55) into Eq. (49) with the use of Eq. (52) and

—K dRi/ (z)

=, we arrive at the set of recurrent

equating the coefficients at z=* R (z) and z
relations at k' < kmax:

, , (56)
(650) _9F —|—p?/> 1/1”/ ok — 1)%(5 —-1) i (651) _ Zi(/1)> %b,(f -1 _ gl(zkl ),

where the right-hand sides fi(i]f and g“, are defined by the relations
’ / K ,
£ == =2) (K — d)oy ) + Z (Vi = 2) ol M+

k/
+Z(Zi(/k)(2k:’—2_ k) ’Ezk; —k— 1)+ Z (Z QQ(k)Z(k ](f;/_k_k )
k=1

Jj=1,5#i k''=1

—22Q w0 + QP (-2 + k+d+ 1)l Y VPl (1)

Jiv’ Ji Ji’

k/
g =~ =K =3+ apll T+ 30 (Vi - 2P) ol P+
k=2
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N
B) (=K (0 (K —k=1) | 1), (K —F)
+ z(zQ 6% — QW 2 4 d— 3 — kyp® + VBt )

j=1,j#i k=1

with the initial conditions p? = 2E — 6(9), 0 = Osirs w( ) = 0, at i’ = i, span over

the open channels i, = 1,..., N, and p;; = 1q;, q;» > 0, qi, = (0 —2F at i’ =i, span
over the closed channels i, = N, 4+ 1,..., N that followed from (15) and (24). Also

from Eq. (56) at ¥’ =1 and i = ',

(40 - 2 6 =0, (0 = 20) 48 o, )

we obtain the condition Z(l) = e(l).

Step 3. Here we perform the calculation of the coefﬁ(:lents gb“, and w“, using
step—by—step procedure of solving Eqgs. (56) for 2F # Q" yi#d and K =1,. .. kpax:
_1 ’ ’

¢§5> [ — @] [ = (0 = Z0) 6l 22— 1l Y]

-1 / / (59)
& = [eqm _ 6(9)] { g o — 1)l (é” _ 7 1)) e _1)}
and for 2F # eg,()), i=14 and k' =2,..., kmax:
oy == 20K - DI gfik

(60)

w(kfl) [2(1#—1) (2E—€§?))} f(k).

The algorithm described above was implemented in Maple and Fortran. The re-
sulting output provided the evaluation of the required solutions x;i(z) and their

derivatives XJd%Z(Z) This algorithm has been examined with the results of Ref. [4].

Remark 2. The choice of the appropriate values zi, and zy,ax for the constructed
expansions of the linearly independent solutions for p; . > 0 is controlled by the fulfill-
ment of the Wronskian condition (19), (20)

WI'(Q(Z);X*(Z),X(Z)) = £l (61)

up to the prescribed precision ey ;..

5. Benchmark Calculations of Transmission Coefficient

The wave function ¥(Z,%) of two particles (or ions) labeled by i = 1,2 coupled

by the oscillator potential, penetrating through repulsive (Coulomb) barriers U (Z;) in
the center-of-mass coordinate frame satisfies the two-dimensional Schrodinger equa-
tion [12]:

B0
2M 022 24 0%2

+ Uy (81) + Us (i) — E)xi/(fz,z):o, (62)

where @ is the oscillator frequency, E is the energy, &, = % 4 $1&, &gy = 2 — s3&
are variables in the laboratory system of coordinates. The parameters s; = mo/M,
s3 = my /M are defined via the masses of particles m; and mg, and their total mass
M = m; + mz and the reduced mass p = mymsy/M.
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After the transformation of variables

T =To0d, 2= Mgz, (63)

osc

with the oscillator unit of length z,s. = \/h/(1u@), the corresponding Eq. (62) leads
to the following dimensionless equation in the form of Eq. (1) with fi(z) = fa(z) =

f3(2) = fa(z) = f5(x) =

1 0 o 1
<fl(2')3zf2(z)az f3( )L(x 12) — 5) U(z,z) =0,

1

P (64)
L<$7Z): (93)8 f5( ) +f3( ) (.’L‘,Z),

where £ = 2E = F /Eosc and V(x, z) are the dimensionless energy and barrier poten-
tial in units of energy F,s. = hav/2

V(z,z) =2 + Ur(z1) + Uz(22) = Eose™ (Nw #2/24 Uy (21) + Us (372)) (65)

where x1 = s92 + s12 and xo = S92z — s3x with so = /u/M.

Model A. We choose the barrier potentials U;(x;) with the effective charges Z; >0
in the form of the repulsive truncated Coulomb potential cut off at small 0 < Zp,in < 1
and large Tyax > 1 distances from z; = 0 as [13]

27, 27,

min(max(Zmin, [:|), Zmax) " Tmax

Model B. We define the Coulomb-like potentials U;(x;) that depend on the integer
parameter s > 2 and the truncation parameter T, > 0 [12]:

2Zi

Model C. For the ionization problem of the hydrogen atom in a magnetic field we
choose the total potential U(x, z) of the three-dimensional boundary value problem
for Eq. (64) in cylindrical coordinates (z,x = (p)) with fi(z) = f2(2) = f3(2) =1 and
fa(x) = fs(x) = p at fixed magnetic quantum number m, given by the sum of circu-
lar harmonic oscillator potential with frequency w="/2 and the three-dimensional

Coulomb potential with charge Z = —1, V(x,2) = m?/p? + w?p? — 1//p? + 22.

The asymptotic boundary conditions for the solution \If(z z) = {¥,, (=, a:)}f\of_l
with the direction v =— can be written in the obvious form

(s~ 2, )

U, (z = —o0,x) — Bi(o) x
’ Di,

No exp ( — (pjz — sign(2) 22 In(2p;|2|)
0 Py
+> B (@) il — ) Rji,. (68)
j=1 P;

_l’_

No exp (2 (pjz — sign(z)£12 ln(2pj|z|)>)
Ui, (2 — +o0,2) = Y B (2) i Ty,
j=1 vPi
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U, (z,2 — +o0) — 0.

Here N, is the number of open channels at fixed energy 2E = p? —l—egoo) > 0; Z12 = 0 for
model A and Z19 = (21 +Zg)/32 for model B; Rj;, and T};, are unknown reflection and

transmission amplitudes; BJ(-O) (z) are the basis functions of the oscillator corresponding

to the energy el0 = 2j—latj>1

J
L 9 0 0\ RO\ _
(T @y + 2 -4”) 870 =0

Tmax (Z) (69)
B (2)B{" (2) fa(x)dw = 5y;.

ZTmin(2)

Note, that the desired solution of the BVP (64), (68) can be constructed in the
form of Galerkin-type expansion:

Uir(w,2) = Y B (@)xo (2). (70)

j=1

over the basis functions (69). In this case we also obtain the BVP for a set of N
coupled ODEs (6), but instead of the effective potentials (7) we have the following
ones:

Tmax (%)
%@Fﬁ%ﬁ‘/BmW%@$WM@M Qij(z) =0.  (71)
Tmin (z)

The effective potentials V}; and Vj;_o from (7) and (71) are shown in Fig. 2. One
can see that the effective potentials have similar behavior at increasing j and |z|

and the diagonal ones Vj; converge to the harmonic oscillator eigenvalues 5§0). The
nondiagonal effective potentials in the Kantorovich method is smaller in absolute value
within the interval of the longitudinal variable, except for the sharp peaks, which are
produced by the avoiding crossings of the potential curves €;(z) of the parametric

problem (4) with respect to the longitudinal variable.

The eigenvalue problem (4), (5) at a = 0, b(z) = 1 was solved using the ODPEVP
program [23] for z € [Zmin, #max] that yielded well-separated eigenvalues |&;(z) —
gi—1(2)] > € > 0 where € ~ 0.05 for the double-precision arithmetic. This condi-
tion is valid for the accepted values of parameters of the considered models. In the
case of poorly-separated eigenvalues, i.e. if 0 < |g;(2+) — €i—1(2+)| < €, one should
generate a more dense grid in the vicinity v, = |z — z.| < €, of the avoided cross-
ing points z, and/or use multi-precision arithmetic. For long-range potentials one
should construct the appropriate asymptotic expansion for the eigenvalues and the
corresponding eigenfunctions z € (—00, 400)\[Zmin, Zmax| t0 build up the asymptotic
effective potentials with the leading terms

Vi) = (5 4 simn) 22 ) 354 067, Qu()=0G), (7

and the asymptotic expansions of solutions of the above set of equations (49) at d = 1
(see more details in [12]).
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Figure 2. The even effective potentials V;; and Vj;_» for Kantorovich (left
panel) and Galerkin-type (right panel) expansions for Coulomb-like potential
barriers (67)

For the given number N of (4), the values &, and xpax of the grid Qp,_ {Zmin, Tmax }
were chosen in the region |z| > zo = /2N + 1, where the Hermite polynomial [24] (or
the basis function Bj(x; z) in a general case) has no zeros. These values are computed

from the condition
T
exp —/dx\/xQ — 23 | < €num, (73)
Zo

which in the given case leads to the inequality

mg/2 R
exp (—x 2 — m%/Z) <:c + /22— m%) x(;m“/? < €num- (74)

To find an approximate solution, at the first step we choose the initial approximation
Tmax = To, after which it is increased with step 1 until the condition (74) is satisfied.
Values Zmin < Tmin and Zmax > Tmax Were chosen from the condition that the potential
(66) or (67) is negligible within the interval zpin < & < Tmax-

The matching points 23l and zateh of the numerical (7) and asymptotic (50),

(72) effective potential were calculated as follows:

Zinateh — min (z?, ZY) , aateh — max (zQQ, z;/> ,

(75)

krnax
Vo]

Enum

)
enum



Gusev A.A. Algorithm for Computing Wave Functions, Reflection and . . . 109

since |Q§];7““")| < |Q§\],C]"\‘,aj)l , |Vj(jk,ma")| < |V]E,]§{,““")|. So, the values zyin and zpax were

satisfied by the inequalities zpi, < zina“h < ZTmin and zZmax > zé“at‘;h > Tmax that
should be calculated from the conditions

|¢(krn'\,x) | |¢(kmdx) |
match : kmax Wiie 1 . kmax Wi, |
Zmin = min | 2] ,min | — ,min | — ,
J €num J €num
& ‘gb max)‘ % |,(/)(krnxx |
max Z max 1
Zmax = Max | 282N max Do , ax —Je
J €num J €num

In the considered examples we used the grids Qp,_ {Zmin, Tmax} = {—10(768)10} and
Qn_{2Zmin, Zmax } = {—125(200)—25(100) —6(200)6(100)25(200)125} with the Lagrange
elements of the order p = 4 between the nodes. In the above notations the number of
grid elements for grids €25, and € is shown in the parentheses.

For the calculation of asymptotic solutions of model B, we used the etalon equation
(52) at d = 1, kl . = 1 and Zi(/l) = 2sign(y)Z12, which corresponds to the known

max
solutions in the open channels

(76)

_ Go(pi,, +2z) £ 1Fo(pi,,+2)) exp(Fud;,)/2, z>0
R:l: Lz 1/2{ ( 0 o) ) ° ) ) 77
to (pi,» 2) = Pi, (Go(pi,, —2) F1Fo(pi,, —2)) exp(£;,)/2, z <0, (77)
and in the closed channels
R (gi.,2) = q;mt exp(—t/2) U(1 + Z12/4i,,2,t), t=2q;]z|. (78)

Here Fy(pi,,z) and Go(pi,,z) are the regular and irregular continuum zero-order
Coulomb functions calculated by the subroutine RCWFNN [4] which is a modified
version of the subroutine RCWFN [25] for the DOUBLE PRECISION accuracy;
o;, = arg' (1 +1Z12/p;,) is the Coulomb phase shift [24]; and U(a, b, ¢) is the conflu-
ent hypergeometric function of the second kind, calculated by the subroutine CHGU
[26]. Note, that for the numerical calculation we have neglected the exponentially small
factor exp(—t/2) in R;_(qi,, 2) and its first derivative, since this factor is canceled dur-
ing evaluation of the R(z) matriz in Eq. (25). At the boundary points zpyin and zmax
the absolute accuracy ey, of the calculated Wronskian was less then 10711,

Below we use the parameters: m; = mg = 1, Ty = 0.1, Zl = 22 = 0.5 and
Z1 = Zo=1. Also Tmax = 5 for model A, and s = 8 for model B.
The total probabilities T = Ty, = Z;V:O1 |T1;]? of penetration through truncated

Coulomb (66) and Coulomb-like (67) potential barriers of models A and B are shown
in Fig. 3. These figures illustrate the important peculiarity that a more realistic
nontruncated Coulomb-like barrier, being wider than the truncated one, leads to a
set of the probability maximal having a bigger half-width. This fact can be used
for distinguishing between the models of type A and B by observing the quantum
transparency effect.

The results given by Kantorovich and Galerkin-type expansions differ by less the
0.1%. The absolute maximum value max |x;;,| = max |x;;, (2)| of components x;;, (z)
displayed in Fig. 4 show similar convergence of expansions (3) and (70). For the chosen
approximation of Lagrange elements of the order p = 4 for their eigenfunctions and
transmission coefficient we obtain numerical estimations of Runge coefficients within
4.6 =~ 4.7, and in the range 7.4 + 7.7, respectively, which correspond to the theoretical
error estimates (35) at fixed number N of Egs. (6).

Note, that in this example, the Galerkin and Kantorovich expansions have approx-
imately similar rate of convergence, which gives preference to the first method, since
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the procedure for calculating the matrix elements by direct integration with known
basis functions is less expensive than the procedure for calculating the matrix elements
with the help of the basis functions and their first derivatives, obtained by solving the
parametric boundary-value problems arising in the Kantorovich method. This is due
to the fact that in the above examples, these basic functions of a finite set used in
the Galerkin-type and Kantorovich expansions are transversely localized in the region,
bounded by the scope of the oscillator potential.

For problems similar to the ionization of a hydrogen atom in the uniform magnetic
field the total potential have spherical symmetry in a vicinity of the Coulomb center
where the oscillator potential is negligible and cylindrical symmetry at a large distance
from the center with increasing of the oscillator potential. In this case Galerkin-type
expansion has a rather slow convergence rate and we apply the decomposition of the
desired solution in cylindrical or spherical coordinates over the surface orthogonal basic
functions depending on the longitudinal variable z or radial variable r as a parameter,
respectively.

As an example, Fig. 5 shows the results of calculations of the transmission coef-
ficient of the first open channel obtained by the algorithm discussed above and im-
plements its program KANTBP 3.0 [16] in cylindrical and spherical coordinates of
model C.

TP?

e S
o%()10%(m?)

ps 7 -1 T T T T T T T T T
004 005 006 007 008 009 010 011 012 0,13
12

(E,-2E) E(au)

Figure 5. The transmission coefficient |T|? = |T|?; vs (Ey — 2E)~/? for 10, 20, 40
cylindrical adiabatic basis functions (dashed lines) and for 10 spherical
adiabatic basis functions (solid line) at m = 0; the arrow points at the energy of
the first Landau threshold (E; — E;)~/2 = /5 ~ 2.236 (left panel) and the bounce
ionization cross-section ad(w) vs energy F from lower states of a hydrogen atom
l7=1,k=1,m,0 = +1) to continuum states |E,m) m =0,—1,...,—12 (right panel).
Here vy =0.1 (B=2.35-10"T), Z =1

One can see that for small values of the magnetic quantum number |m/| the wave
function localized in a region of the Coulomb center and the convergence rate of
the Kantorovich expansion in spherical coordinates is higher than in cylindrical ones.
However, with increasing of the magnetic quantum number |m| the wave function is
displaced from the center of the Coulomb and the situation is reversed [27]. Non-
monotonic behavior of the transmission coefficient and the ionization cross-section
vs energy shown Fig. 5 are produced by the series of metastable states embedded
in the continuum spectrum due to contribution of close channels up to |m| < 12.
Decreasing of ionization cross-section at |m| 2 12 follows from adiabatic separa-
tion of transversal and longitudinal variable [27] at values of adiabatic parameter
(wp/wzi=1)*? = |m|y'/® > 6, where w, = /2, in agreement with [6]. The anal-
ysis of the models shows that solution of the multichannel scattering problem for
different compound potentials is achieved with help of the proposed algorithms and
software complexes [8,16,17].
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6. Conclusion

A new formulation of the problem related to the multichannel scattering prob-
lem for a system of the second-order ordinary differential equations containing the
potential matrix elements and first-derivative coupling terms with respect to the inde-
pendent variable belonging to axis is proposed. The boundary problems for the cou-
pled second-order differential equations are solved by the finite element method using
high-order accuracy approximations with Lagrange elements. The order of approxi-
mation depends on the smoothness of required solution. Taking into account matrix of
logarithmic derivatives R(2min) (0r R(zmax)) determined by asymptotic regular solu-
tions (25), algebraic problems (30)—(31) with respect to pair unknowns (R (zmax), ® )
(or (R(2min), ®",)) together with the reflection R, (R_,) and transmission T, (T_,)
matrices, arising after the corresponding replacement of the scattering boundary prob-
lem in open channels at fixed energy value, E, was reduced to the auxiliary system
of nonhomogeneous algebraic equations (39) (or (47)). The later has been solved by
the LDLT factorization of symmetric matrix and back-substitution methods using
the modifications of the DECOMP and REDBAK programs [28], respectively with-
out calculation of the inverse of submatrix G%¢ (or G%). Presented algorithm is
implemented as Fortran program KANTBP 3.0 [16].

This approach can be used in the calculations of quantum transmittance of bar-
riers for composite particles [14, 15], channeling problem [5], quantum well and wire
problems with Hydrogen-like impurities [29,30], and resonant molecule formation in
waveguides [31].

References

1. Born M., Huang K. Dynamical Theory of Crystal Lattices. — New York, Oxford
Clarendon Press, 1964.

2. Goodvin G. L., Shegelski M. R. A. Three-Dimensional Tunneling of a Diatomic
Molecule Incident Upon a Potential Barrier // Phys. Rev. A. — 2005. — Vol. 72. —
Pp. 042713-1-7.

3. Pume P., Pacmyccen /., Maccman I IIpobiieMbl TPOHUIIAEMOCTH HEOTHOMEPHBIX
6apwepos // DHUAA. — 1976. — T. 7. — C. 916-951. [Barrier Penetration Theory
in more than One Dimension / R. Ring, J. Rasmussen, H. Massman // Sov. J.
Part. Nucl. — 1976. — Vol. 7. — P. 916-951. — (in russian). |

4. POTHMEF: a Program for Computing Potential Curves and Matrix Elements of the
Coupled Adiabatic Radial Equations for a Hydrogen-Like Atom in a Homogeneous
Magnetic Field / O. Chuluunbaatar, A. A. Gusev, V. P. Gerdt et al. // Comput.
Phys. Commun. — 2008. — Vol. 178. — Pp. 301-330.

5. Channeling Problem for Charged Particles Produced by Confining Environment /
O. Chuluunbaatar, A. A. Gusev, V. L. Derbov et al. // Phys. Atom. Nucl. —
2009. — Vol. 72. — Pp. 811-821.

6. Guest J. R., Raithel G. High-|m| Rydberg States in Strong Magnetic Fields //
Phys. Rev. A. — 2003. — Vol. 68. — Pp. 052502-1-9.

7. Kantorovich L. V., Krylov V. I. Approximate Methods of Higher Analysis. —
New York: Wiley, 1964.

8. Gusev A. A. The Algorithms of the Numerical Solution to the Parametric Two-
Dimensional Boundary-Value Problem and Calculation Derivative of Solution with
Respect to the Parameter and Matrix Elements by the Finite-Element Method //
Bulletin of PFUR. Series “Mathematics. Information Sciences. Physics”. —
2013. — No 4. — Pp. 101-121.

9. Strang G., Fiz G. J. An Analysis of the Finite Element Method. — New York:
Prentice-Hall, Englewood Cliffs, 1973.

10. Ramdas Ram-Mohan L. Finite Element and Boundary Element Applications in
Quantum Mechanics. — New York: Oxford Univ. Press, 2002.



Gusev A.A. Algorithm for Computing Wave Functions, Reflection and . . . 113

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

Finite-Element Solution of the Coupled-Channel Schrédinger Equation using
High-Order Accuracy Approximations / A. G. Abrashkevich, D. G. Abrashke-
vich, M. S. Kaschiev, I. V. Puzynin // Comput. Phys. Commun. — 1995. —
Vol. 85. — Pp. 40-64.

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a
Coupled Pair of Ions / A. A. Gusev, S. I. Vinitsky, O. Chuluunbaatar et al. //
Lecture Notes in Computer Science. — 2011. — Vol. 6885. — Pp. 175-191.
Ienvroe @. M. KBanToBasi mpo3padHOCTh 6APbEPOB JIJIsk CTPYKTYPHBIX YacTuIy //
ZKOT®. —2000. — T. 118. — C. 806-815. [Pen’kov F. M. Quantum Transmittance
of Barriers for Composite Particles // ZHETF. — 2000. — Vol. 91. — Pp. 698-
705. — (in russian). |

Iyces A. A. HoBblit METO/I IIOCTPOEHUS OCIUJIIATOPHBIX (DYHKIIUNA KBAHTOBON CH-
CTEMBI TOXKJIECTBEHHBIX YaCTHUI] B CHMMETDPH30BAHHBIX KoopjuHarax // BecrHuk
PYIIH. Cepua «Maremaruka. Undopmarura. Pusukay. — 2013. — Ne 3. — C. 52—
67. [Gusev A.A. New Method for Constuctiond the Oscillator Functions of a
Quantum System of Identical Particles in Symmetrized Coordinates // Bulletin of
PFUR. Series “Mathematics. Information Sciences. Physics”. — 2013. — No 3. —
Pp. 52-67. — (in russian). |

Iyces A. A. Moyenb TyHHEJIMPOBaHWS KJACTEPOB dYepe3 OTTaJKUBAaoNnme Oa-
pPhEpbl B IIPEJCTABJICHUN CHUMMETPU30BaHHbIX Koopjuuar // Becraumk PYJ/IH.
Cepusa «Maremaruka. Undopmaruka. Puszmkay. — 2014. — Ne 1. — C. 54—
73. |Gusev A.A. The Model of Tunneling of Clusters Through Repulsive
Barriers in Symmetrized Coordinates Representation // Bulletin of PFUR. Series
“Mathematics. Information Sciences. Physics”. — 2014. — No 1. — Pp. 54-72. —
(in russian). |

Chuluunbaatar O., Gusev A. A., Vinitsky S. 1., Abrashkevich A. G. A Pro-
gram Package for Solution of Two-Dimensional Discrete and Continuum Spec-
tra Boundary-Value Problems in Kantorovich (Adiabatic) Approach. — 2013. —
http://wwwinfo. jinr.ru/programs/jinrlib/kantbp/indexe.html.
KANTBP: A Program for Computing Energy Levels, Reaction Matrix and Radial
Wave Functions in the Coupled-Channel Hyperspherical Adiabatic Approach /
O. Chuluunbaatar, A. Gusev, A. Abrashkevich et al. // Comput. Phys. Com-
mun. — 2007. — Vol. 177. — Pp. 649-675.

KANTBP 2.0: New Version of a Program for Computing Energy Levels, Reaction
Matrix and Radial Wave Functions in the Coupled-Channel Hyperspherical Adia-
batic Approach / O. Chuluunbaatar, A. A. Gusev, S. I. Vinitsky, A. G. Abrashke-
vich // Comput. Phys. Commun. — 2008. — Vol. 179. — Pp. 685-693.

Macek J. Hermitian R Matrix in the Presence of First-Derivative Couplings //
Phys. Rev. A. — 1984. — Vol. 30. — Pp. 1277-1278.

Calculation of a Hydrogen Atom Photoionization in a Strong Magnetic Field by
using the Angular Oblate Spheroidal Functions / O. Chuluunbaatar, A. A. Gusev,
V. L. Derbov et al. // J. Phys. A. — 2007. — Vol. 40. — Pp. 11485-11524.

A Symbolic-Numerical Algorithm for Solving the Eigenvalue Problem for a Hydro-
gen Atom in the Magnetic Field: Cylindrical Coordinates / O. Chuluunbaatar,
A. Gusev, V. Gerdt et al. // Lecture Notes in Computer Science. — 2007. —
Vol. 4770. — Pp. 118-133.

Golub G. H., Van Loan C. F. Matrix Computations. — New York, Johns Hopkins
Univ. Press, 1996.

ODPEVP: A program for Computing Eigenvalues and Eigenfunctions and their
First Derivatives with Respect to the Parameter of the Parametric Self-Adjoined
Sturm-Liouville Problem / O. Chuluunbaatar, A. A. Gusev, S. I. Vinitsky,
A. G. Abrashkevich // Comput. Phys. Commun. — 2009. — Vol. 180. — Pp. 1358~
1375.

Abpamosuy, M., Cmuean M. CipaBo4HUEK 110 criennajibHbIM GyHKInsaM. — M.: Ha-
yka, 1979. [Abramovits M., Stigun I. A. Handbook of Mathematical Functions. —
New York: Dover, 1972. |



114 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 2, 2014. Pp.93-114

25. Coulomb Wave Functions for All Real n and p / A. R. Barnett, D. H. Feng,
J. W. Steed, L. J. B. Goldfarb // Comput. Phys. Commun. — 1974. — Vol. 8. —
Pp. 377-395.

26. FORTRAN Routines for Computation of Special Functions. — http://jin.ece.
illinois.edu/routines/routines.html.

27. Symbolic-Numerical Calculations of High-|m| Rydberg States and Decay Rates in
Strong Magnetic Fields / A. A. Gusev, S. L. Vinitsky, O. Chuluunbaatar et al. //
Lecture Notes in Computer Science. — 2012. — Vol. 7442. — Pp. 155-171.

28. Bathe K. J. Finite Element Procedures in Engineering Analysis. — New York:
Englewood Cliffs, Prentice Hall, 1982.

29. Symbolic-Numerical Algorithms for Solving Parabolic Quantum Well Problem
with Hydrogen-Like Impurity / S. I. Vinitsky, O. Chuluunbaatar, V. P. Gerdt
et al. // Lecture Notes in Computer Science. — 2009. — Vol. 5473. — Pp. 334—
349.

30. The Application of Adiabatic Method for the Description of Impurity States in
Quantum Nanostructures / A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al. //
J. Phys. Conf. Ser. — 2010. — Vol. 248. — Pp. 012047-1-8.

31. Melezhik V. S., Schmelcher P. Quantum Dynamics of Resonant Molecule Forma-
tion in Waveguides // New J. Phys. — 2009. — Vol. 11. — Pp. 073031-1-10.

YK 517.958:530.145.6
AnropuTm BbIYHMCJIEHUS] BOJTHOBBIX (DYHKIIUI, MAaTPUIL
OTparKeHUs U MPOX0XKJIEHNsI MHOTOKAaHaJbHOU 3aJiauu
paccesinusi B a/;lnabaTUYeCKOM IPeICTABJIEHUN METOJIOM
KOHEYHBIX 3JIEMEHTOB

A.A. I'yces

Jlabopamopusa uHPOPMAYUOHHBIT MeTHoA02Ul
065edunénroill urncmumym AEPHHLLIL UCCAELA08AHUL
ya. 2Koauo-Kiropu, 0. 6, 2. Jybrna, Mockosckot oba., Poccus, 141980

B anmabarudeckoM IIpe/icTaB/IEHNN MHOTOKAHAJIbHAS 3aJada PACCesSHUs JJIsi MHOIOMED-
Horo ypaBHeHusi llIpénunrepa cBejeHa K KpaeBOil 3ajiade I CUCTEMBI CAMOCOTPAKEHHBIX
OOBIKHOBEHHBIX UM dEPEHITNATbHBIX YPABHEHUN BTOPOrO MOPSIAKA HA KOHEYHOM HHTEDPBa-
JIe C OJJHOPOJHBIMM I'DAHUYHBIMU yCJIOBHUSAMHU TPETHErO TUIIA B JIEBOM M IPaBOil I'DAHUYHBIX
TOYKaX B paMKaxX MeToja KaHTopoBMda, UCIONMB3YsT auabaTHIeCKuil 6a31C MOBEPXHOCTHBIX
bYHKIMA, 3aBUCAIMX OT MPOJIOJLHON MEPEMEHHON Kak OT mapamerpa. s MCKOMBIX pe-
IeHnii KpaeBo 3a/1a4u cHOPMYJTUPOBAHBI OJHOPOJIHBIE YCJIOBUSI TPETHETO POMA, HCIOIb3Ys
M3BECTHBIE HAOOPHI JIMHEHHO-HE3ABUCUMBIX PErYISPHBIX W HEPETYISAPHBIX aCHMITOTHIECKIX
pEIIeHni B OTKPBITBIX KaHaJIaX PeAyIIMPOBAHHON MHOTOKAHAJIBHON 3a/1a9M PACCESHUS Ha OCH,
B KOTODBIE BXOJSIT MCKOMBIE MATPUIIBI aMILIUTY/ ITPOXOXKIEHUsI M OTPaKEHUsI, U HADOP JIin-
HETHO HE3aBHUCHUMBIX PEryJISapPHBIX aCUMITOTHYECKHX DEIIEHUN B 3aKPbITHIX KaHastax. lIpen-
JIO?KEH SKOHOMHUYHBIN M YCTOMYUBBIN aJITOPUTM YHCJIEHHOI'O PAacY€Ta C 3aJaHHOM TOYHOCTHIO
MaTPWUIT OTPAYKEHUST U TPOXOKJIEHUST U COOTBETCTBYIONINX BOJTHOBBIX (DYHKIMI MHOTOKAHA b=
HOHM 3aJa<i PACCesHUs [JIsl CUCTEMBI CAMOCOIPSI?KEHHBIX OOBIKHOBEHHBIX IuddepeHiinaib-
HBIX ypaBHEHUI BTOPOT'O NOPsJIKa C MAaTPUIIAMH IIOTEHIINAJIOB M MAaTPHUIIAMU, COJEPXKAIUMUI
IIepBble IIPOU3BO/IHBIE, UCIIOJIb3Ys AIIPOKCHUMAIIAIO BBICOKOTO IOPSIKA TOYHOCTA METOJIOM
KOHeUYHBIX 2seMeHTOB (MK?D). DddeKkTnBHOCTD NPeIiIoKEHHOr0 ajJIrOPUTMa IPOJAEMOHCTDH-
pOBaHa peIIeHHeM JIBYMEPHON KBAHTOBOH 3aJladM IPOXOXKJIEHUS Hapbl YaCTHI] C OCIUJLISA-
TOPHBIM IIOTEHIINAJIOM B3aMMOJIENCTBHUS Yepe3 OTTAJKHUBAIOIINE IIOTEHIINAIbI KYJIOHOBCKOT'O
THUIIA U 33/I1a9U PACCETHHUs JEKTPOHA B KYJOHOBCKOM IIOJI€ IIPOTOHA M B OJHOPOIHOM MAar-
HHUTHOM II0JIe B paMkax Mero10B KaHTOpoBMYa M raj€pKMHCKOTO THUIIA, & TAKXKE aHAJIU30M
X CXOIVMOCTH.

KuroueBrble cjoBa: MHOTOKAHAJIbHAS 3a7[atda PACCETHNS, MATPUITHI AMILTATY ITIPOXOXK-
JeHusI U OTparkeHusi, MHOromepHoe ypaBHenue [lIpénunarepa, agnadaTudeckoe IIpecTaBIIe-
Hue, MeTos KanTopoBuya, KpaeBast 3a/jada, CUCTEMa CAMOCONIPAZKEHHBIX OOBIKHOBEHHBIX TUD-
depeHIaIbHbIX YPABHEHUN BTOPOTO MOPSIIKA, METOJ] KOHEUHDBIX JJIEMEHTOB.





