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Tesla reading of electricity through invisible energy ether between visible bodies corre-
sponds to the found radial solution for a continuous source. The Mie–Schwinger distributed
electron extends over the very structure of its Coulomb radial field. The electric charge is
not a basic concept of Maxwell-Tesla electrodynamics but is the field energy distribution
under the unified, non-dual approach to matter-energy in the nonempty world space. Elec-
tric self-energy of such a unified nonlocal carrier is finite despite the latter fills the infinite
Universe with Tesla material ether everywhere (without empty space regions). Maxwell’s
equations can describe both local balances of electric self-energy currents and nonlocal Tesla
resonances within the global world overlap of moving continuous carriers of energy. Mate-
rial Tesla space for overlapping electric energy sources in Maxwell’s equations calls for radial
mass-energy sources in the Einstein equation.
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1. Spirality of the elementary Maxwell wave

By considering Maxwell’s equations as a very reliable tool for any engineering
computations, physicists are not looking anymore on the Mie program [1] to use this
classical tool for description of elementary charges. Spins of elementary particles, for
example, are often discussed only by way of quantum physics, rather than by the clas-
sical theory of fields. As a result, one could assume that spins of elementary particles
are related exclusively to their quantum properties, which have to disappear in the
classical limit ~ → 0 for the Planck constant. However, Classical Electrodynamics
(CED) complies not only with the Einstein principle of relativity for space-time trans-
lations of matter, but also with the 10-dimensional Poincaré group. This noncompact
Lie group is a semidirect product of the translations with the Lorentz transformations.
It was established that the spin of a classical system can be related to the Lorentz
little group, namely to the unitary irreducible representations which determine the
polarization degrees of freedom [2].

Sooner or later, a complete theory of classical fields should find a way to spec-
ify spatial structures of rotating non-point sources and to unify continuous particle
and field densities for distributed elementary energy, momentum, angular momentum,
charge, current, etc. This conceptual avenue to specific properties of distributed ele-
mentary sources beyond delta-operator densities starts from the well-studied Maxwell’s
equations, regardless of the fact that new advanced theories, like Quantum Electro-
dynamics (QED) or Chromodynamics, are more beneficial for matter fundamentals.
Our initial search is focused on a basic CED wave, which ought to replicate the spin
±1 of the QED photon as a strict consequence of only classical laws and equations
(due to Lorentz, Poincaré, and Wigner). Then, only the energy quantization of wave
fields, rather than their spin or helicity, falls under the exclusive scope of quantum
physics.

Recall that the classical continuity equation for non-stationary charged matter,

div𝐽 = −𝜕𝜌/𝜕𝑡 ̸= 0, (1)

was used as a main argument for the time-varying modification of the Ampère law for
steady currents and static magnetic fields. Indeed, the displacement current had been
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suggested by Maxwell in order to keep the charge density conservation for any non-

stationary current 𝐽 . The latter had been modeled by Lorentz through an averaged
ensemble of elementary microscopic currents �⃗�𝑘. The postulated existence of the stable
microscopic charge enabled the successful Lorentz theory with the steady flow option,
div�⃗�𝑘 = 0, for the microscopic current.

In general, an existence of steady states of energy, momentum, angular momentum,
charge or current can be used as a universal criterion for the introduction of indivisible
or elementary objects in classical physics. As such, a steady power flow ought to be
required for the basic or elementary electromagnetic wave. This criterion for the basic
wave element in linear superposition of CED fields can be applied to all known periodic

electric, �⃗�, and magnetic, �⃗�, solutions of Maxwell’s equations.
Vector components of CED waves obey the verified classical equality,

∇⃗ × �⃗� +
𝜕𝜇�⃗�

𝜕𝑡
= 0. (2)

Its plane wave solution, �⃗� = 𝐸0 cos(𝜔𝑡 − 𝑘𝑧)⃗𝑎𝑥 and �⃗� = (𝐸0𝑘/𝜔𝜇) cos(𝜔𝑡 − 𝑘𝑧)⃗𝑎𝑦,
looks like the simplest free wave. However, the power density flow, or the Poynting

vector �⃗� ≡ �⃗�×�⃗� = (𝑘𝐸0
2/𝜔𝜇) cos2(𝜔𝑡−𝑘𝑧)⃗𝑎𝑧 of this “simplest” wave, is not uniform

even in homogeneous space with 𝜇 = const, 𝜖 = const.

The plane wave solution with div�⃗� ̸= const cannot be called the elementary clas-
sical wave because this free electromagnetic field does not satisfy the steady energy
flow criterion for the basic element of matter. One may only suppose for the plane
wave a linear superposition of basic wave elements resulting in a non-steady Poynting
flow and a non-stationary field energy density. Notice that power density variations
along the plane wave are strictly periodic and cannot be associated with fluctuations.

It is our contention that basic wave elements in Maxwell’s electrodynamics have
even more complicated field compositions,{︃

�⃗�± = 𝐸0

[︀
cos(𝜔𝑡− 𝑘𝑧)⃗𝑎𝑥 ± sin(𝜔𝑡− 𝑘𝑧)⃗𝑎𝑦

]︀
,

�⃗�± = (𝑘𝐸0/𝜔𝜇)
[︀
cos(𝜔𝑡− 𝑘𝑧)⃗𝑎𝑦 ∓ sin(𝜔𝑡− 𝑘𝑧)⃗𝑎𝑥

]︀
,

(3)

than the plane wave. At the same time, both the EM power flow,

�⃗�± × �⃗�± = (𝑘𝐸0
2/𝜔𝜇)

[︀
cos2(𝜔𝑡− 𝑘𝑧) + sin2(𝜔𝑡− 𝑘𝑧)

]︀
𝑎𝑧 ≡ (𝑘𝐸0

2/𝜔𝜇)⃗𝑎𝑧, (4)

and the conventional energy density of EM fields,

𝜖�⃗�2
±
2

+
𝜇�⃗�2

±
2

=

(︂
𝜖𝐸0

2

2
+
𝑘2𝐸0

2

2𝜔2𝜇

)︂[︀
cos2(𝜔𝑡− 𝑘𝑧)⃗𝑎2𝑥 + sin2(𝜔𝑡− 𝑘𝑧)⃗𝑎2𝑦

]︀
= 𝜖𝐸0

2, (5)

for these two elementary waves are uniform over space and time. Moreover, the
steady angular rotation rate, which is strictly ±360∘ per every wavelength 𝜆 = 𝑘−1 =
(𝜔2𝜖𝜇)1/2, also matches the introduced criterion for the basic element of matter. For
all of the aforesaid reasons, the paired fields (3) with steady power flow, steady energy
density, and steady angular circulations of vector field polarizations can be defined as
basic electromagnetic waves in the coherent approach to elementary classical objects.

The wave solutions (3) with clock-wise circulation of electric, �⃗�+, and magnetic,

�⃗�+, vectors and counter clock-wise circulation of �⃗�− and �⃗�−, are surely well known
in Maxwell’s electrodynamics. Originally, this Heaviside signal was postulated as “an
unchanging slab of 𝐸 ×𝐻 energy current traveling forward at the speed of light” [3].
Such a steady-flow signal, which “carries all its properties with it unchanged”, replaced
the initially assumed “rolling wave” with Faraday relations between the wave electric
and magnetic fields. The rotating classical waves were successfully replicated by QED
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photons and enforced by quantization. Why should one look again at this “trivial”
classical physics?

The point is that simple logical exercises with the Heaviside “unchanged energy
current” for the elementary wave directly maintain the Mie’s nontrivial hypothesis that
Maxwell’s equations should have conceptual abilities to describe structures of basic
material elements, including continuous elementary charges. The classical interpre-
tation of absorption-emission events for the elementary Maxwell-Heaviside wave with
angular momentum requires angular momentum for an elementary Maxwell charge.
Therefore, the “simplest” Maxwell equation (2) or the covariant equality for CED wave
solutions has demanded, in fact, quite complicated classical physics with non-zero an-
gular inertia of a CED charge. Such a charge with angular momentum cannot be a
point mechanical object. Can other Maxwell’s equations-equalities self-consistently
address non-point elementary charges or “obsolete” Mie’s ideas were incorrect?

2. The radial Mie–Schwinger electron

The postulated point-particle paradigm results not only in the mathematical di-
vergence of the electrostatic self-energy, but also in the physical inconsistence of the
microscopic electron theory. Any point source in the microscopic Maxwell-Lorentz
equations may be considered as “an attempt which we have called intellectually un-
satisfying” [4]. Einstein also criticized his 1915 equation due to the point gravitational
source: “it resembles a building with one wing built of resplendent marble and the
other built of cheap wood” (translation [5]).

The Dirac delta-operator formalism for the point charge seems as a provisional
modeling of physical reality until local analytical charge-field relations can be finally
proposed for Maxwell’s electrodynamics. “A coherent field theory”, stated Einstein
(translation [5]), “requires that all elements be continuous... And from this require-
ment arises the fact that the material particle has no place as a basic concept in a field
theory. Thus, even apart from the fact that it does not include gravitation, Maxwell’s
theory cannot be considered as a complete theory.”

The continuously distributed elementary (astro)charge was reasonably initiated by
Mie in order to derive properties of charges from properties of fields (and potentials)
and to avoid the energy divergence in the Coulomb field center. Unfortunately, the
“Theory der Matter” [1] had not found gauge-invariant post-Coulomb (logarithmic)
potentials and the promising non-empty space concept had not been timely finalized
in 1912–1913. Quantum era of empty-space probabilities for delta-operator (dice) in-
terpretations of physical reality postponed the search for rigorous analytical solutions
of Mie’s matter. In 1984 Schwinger proposed [6] to approximate the extended classical
electron by the exponential radial distribution like in the Yukawa potential. However,
the problem of the unphysical point source is still unresolved self-consistently within
the mathematical formalism of the classical theory of fields. This challenge may be
considered as a motivation for our reinforcement of Mie and Schwinger nonlocal (as-
tro)particle with the continuous radial density over the infinite world volume or the
Universe.

We expect that it is possible to relate analytically the electric, e⃗(𝑥) = 𝑑(𝑥)/𝜖, and

magnetic, �⃗�(𝑥) = 𝜇ℎ⃗(𝑥), field intensities in the Maxwell-Lorentz equations [7],⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div𝑑(𝑥) = 𝜌(𝑥),

div⃗𝑏(𝑥) = 0,

curl⃗ℎ(𝑥) = 𝜌(𝑥)�⃗� + 𝜕𝑡𝑑(𝑥),

curl⃗e(𝑥) = −𝜕𝑡𝑏(𝑥),

(6)

to the local charge, 𝜌(𝑥), and current, 𝜌(𝑥)�⃗�, densities of the extended electron with
the elementary charge integral (−𝑒0) = const. Contrary to the recognized Lorentz
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model, the electron’s charge was not postulated by Mie within a microscopic spatial
volume, while the electron’s fields are in charge-free regions outside the charge volume

(i.e. in supposed empty space). The mathematical equation div𝑑(�⃗�, 𝑡) = 𝜌(�⃗�, 𝑡) can
be rigorously resolved for non-empty space, where the charge and its field coexist
locally in all space points �⃗� in the Universe. In other words, we tend to maintain
the Mie (Einstein) idea that the elementary electric (gravitational) charge is to be
integrated into its spatial field structure with instantaneous local relations between

scalar functions 𝜌(�⃗�, 𝑡) and 𝑑(�⃗�, 𝑡)⃗e(�⃗�, 𝑡).
The mass density 𝑚0𝑛(𝑟) of the distributed radial electron with the analytical

density 𝑛(𝑟) should possess the same active mass-energy density as the passive mass-
energy of electron’s gravitational field (due to the Principle of Equivalence). The
charge density 𝜌(𝑟) = (−𝑒0)𝑛(𝑟) of the same electron should possess a EM energy
density which is equal to the electric field energy density. Therefore, the continuous
charge density of the extended particle is to be proportional to the electromagnetic field
energy density, 𝜌(�⃗�, 𝑡) = 𝜖e 2(�⃗�, 𝑡)/Λ in the rest frame of reference. Then, the electron’s
charge (and its conservation) has the self-energy meaning of the constant (−𝑒0) in the
uniform self-potential Λ = const. Maxwell-Lorentz’s equations for extended electrons
can equally be discussed for the electric current density and for the electric energy
flow densities. One can say that EM self-energy currents are even more fundamental
for CED than electric charge currents. Anyway, CED can employ the charge self-
energy (justified so far only in QED) in Mie’s non-empty space approach to EM fields
(distributed within continuous particle-charges). The delta-operator description of
point charges, say on separated capacitor’s plates, can also discuss the electrostatic
energy of charges in addition to equal amount of their field energy, spatially separated
from such point charges. Contrary to diverging self-energy options for point particles,
our self-energy of the spatially distributed charge can be described through regular
energy density terms and the Poynting vector for continuous fields.

The local equality of the electron’s charge self-energy density, 𝜌Λ, and the electron’s
field energy density, 𝜖�⃗� 2, suggests finite electrostatic integrals, ℰ𝑐ℎ11 and ℰ𝑓 , for both
charge and field energy fractions of the elementary continuous carrier of electricity,

ℰ𝑐ℎ11 ≡ Λ

∫︁
𝜌(�⃗�, 𝑡) d𝑣 =

(−𝑒0)2

4𝜋𝜖𝑟0
=

∫︁
𝜖e 2(�⃗�, 𝑡) d𝑣 ≡ ℰ𝑓 . (7)

Here we used
∫︀
𝜌(�⃗�, 𝑡) d𝑣 = −𝑒0 < 0 for the negative elementary charge and introduced

the electron’s self-potential Λ ≡ (−𝑒0)/4𝜋𝜖𝑟0 < 0 through the phenomenological scale
𝑟0, with 𝜖 = 8.854 × 10−12𝐶2/𝑁 · 𝑚 for a seclude electron. This electron’s scale,
𝑟0 = 𝐺𝑚0/𝑐

2 = 7 × 10−58𝑚, can be evaluated [8] from gravitational theories of
continuous energy sources that might shed some light on the meaning of Λ. Detail
physics for the charge-to-mass ratio is outside of our present goals. We keep 𝑟0 as a free
parameter in (7), where we prefer to operate formally with the doubled conventional
energy-density of EM fields in the self-energy integral

∫︀
𝜖e 2(�⃗�, 𝑡) d𝑣. The doubled EM

energy-density matches the Lorentz force acceleration for the bi-fractional continuous
mass carrier of passive-inertial energy (of a gravitational field) and equal active self-
energy (of a distributed source). Then, the passive charge energy density in our
analysis of paired active and passive charges in one electron universally depends on
the (doubled) self-potential Λ = const and on an external interaction potentials 𝑊 of
another radial charge.

The inhomogeneous post-Coulomb potential𝑊 (�⃗�) ̸= const, with e⃗(�⃗�) = −∇𝑊 (�⃗�),
of the active radial charge should be introduced for interaction with other (passive)
radial charges, but not for the charge self-action. The strict identical balance between
the EM self-field energy density and the charge self-energy density is required only for
the self potential Λ, but not for the interaction potential 𝑊 , i.e. 𝜖�⃗� 2(�⃗�) ̸= 𝜌(�⃗�)𝑊 (�⃗�).
However, we shall prove the exact balance between the finite integral energies of the
distributed charge in Λ = const and in 𝑊 (�⃗�) ̸= const. The principal difference is
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that the uniform self-potential Λ does not generate gradients or local self-forces that
explain the stability of the extended energy source or steady nonlocal charge without
additional Poincaré-type pressures.

The divergence-free energy distribution (7) for a steady continuous astroelectron

“at rest” (�⃗� = �⃗� = 0) does exist in div𝑑(𝑟) = 𝜌(𝑟) for the radial solution of Maxwell’s
equations, {︃

𝑑(𝑟) = (−𝑒0)r̂/4𝜋𝑟(𝑟 + 𝑟0) = 𝜖e(𝑟),

𝜌(𝑟) = (−𝑒0)𝑟0/4𝜋𝑟2(𝑟 + 𝑟0)
2,

(8)

where the steady particle’s density 𝑛(𝑟) = 𝑟0/4𝜋𝑟
2(𝑟 + 𝑟0)

2 replaces the Dirac operator
density 𝛿(𝑟) from the point particle model.

The field flux of the radial charge distribution 𝜌(𝑟) depends on a selected radius 𝑅
for a Gaussian sphere,

4𝜋𝑅2r̂𝑑(𝑅) ≡ 𝑞(𝑅) =
𝑅∫︁
0

𝜌(𝑟)4𝜋𝑟2 d𝑟 =

𝑅∫︁
0

(−𝑒0)𝑟0d𝑟
(𝑟 + 𝑟0)2

= (−𝑒0)
𝑅

𝑅+ 𝑟0
, (9)

where the carrier density scale 𝑟0 is the half-charge radius for the unlimited astrodis-
tribution (8) of the total charge (−𝑒0). In other words, any extremely small but finite
scale 𝑟0 ̸= 0 unavoidably results in the global astrodistribution of the elementary
charge over the entire Universe. Therefore, the non-point Maxwell electron (8) can-
not be localized in principle within the microscopic (and even macroscopic) volume
assumed in the Lorentz model. The Maxwell charge density is firmly bound with the
electric field energy density, 𝜌 ∝ e⃗2. This identical charge and its field energy counter-
flows ought to fill the non-empty world space continuously together with collinear
(residual) energy co-flows of the distributed active mass and its passive gravitation
field within the elementary radial carrier [8]. The exact mathematical solutions (8) to
equations (6) for overlapping elementary charges conceptually reject the empty space
paradigm with separated fields and particles.

The classical Poisson equation, ∇2𝑊 = −𝜌𝜖−1 = −Λ−1(∇𝑊 )2, reads the Maxwell
(astro)electron as a non-linear field composition with respect to the radial field inten-
sity (8) or the electron self-potential 𝑊 (𝑟), with e(𝑟) = −𝜕𝑟𝑊 (𝑟) and

1

𝑟2
𝜕𝑟[𝑟

2𝜕𝑟𝑊 (𝑟)] = −Λ−1[𝜕𝑟𝑊 (𝑟)]2 = − (−𝑒0)𝑟0
4𝜋𝜖𝑟2(𝑟 + 𝑟0)2

. (10)

This non-linear equation reveals the post-Coulomb solution for the continuous radial
carrier of electricity,

𝑊 (𝑟) =
(−𝑒0)
4𝜋𝜖𝑟0

ln
(︁
1 +

𝑟0
𝑟

)︁
= Λ ln

(︁
1 +

𝑟0
𝑟

)︁
, (11)

next to the harmonic solution 𝐶1𝑟
−1 +𝐶2 of the incomplete Laplace equation for the

point-particle paradigm and the Coulomb approximation of electric potentials.
The post-Coulomb potential (11) reproduces the regular Coulomb law for point

particles when 𝑟 ≫ 𝑟0 → 0, as (−𝑒0/4𝜋𝜖𝑟0) ln[(𝑟 + 𝑟0)/𝑟] ≈ (−𝑒0/4𝜋𝜖𝑟)[1 − (𝑟0/2𝑟)].
Recall that the sphere with microscopic radius 𝑟0 contains exactly half of the elec-
tron charge (−𝑒0). The other half of the elementary astrocharge is distributed over
micro, macro, and mega scales in the Universe, which is already known [9] as the
non-local material system. The electron’s density scale 𝑟0 = 7 × 10−58𝑚 is well be-
yond the Planck’s length and the current limit 10−18𝑚 of space measurements. This
corresponds to the formal success of the 𝛿-operator modeling of nonlocal particles for
their concentrated (almost point) interactions, formally called local ones.
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One can verify that the astrocharge distribution (8) matches the CED integral
relation for the logarithmic post-Coulomb potential (11),

∫︁
(−𝑒0)𝑛(𝑟′) d𝑣′

4𝜋𝜖|�⃗� − �⃗�′|
=

∞∫︁
0

2𝜋∫︁
0

𝜋∫︁
0

d𝜑′ sin 𝜃′ d𝜃′𝑟′2 𝑑𝑟′

4𝜋𝜖
√
𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos 𝜃′

(−𝑒0)𝑟0
4𝜋𝑟′2(𝑟′ + 𝑟0)2

=

∞∫︁
0

d𝑟′(−𝑒0)𝑟0
4𝜋𝜖(𝑟′ + 𝑟0)2

(︂
|𝑟′ + 𝑟| − |𝑟′ − 𝑟|

2𝑟𝑟′

)︂
=

=
(−𝑒0)
4𝜋𝜖𝑟0

∞∫︁
𝑟

d𝑟′
(︂
1

𝑟′
− 1

𝑟′ + 𝑟0

)︂
≡

∞∫︁
𝑟

𝑒(𝑟′) d𝑟′ =𝑊 (𝑟). (12)

Notice that 𝑊 (𝑟) coincides with the work associated with the displacement of a unit
probe (positive) charge from the point 𝑟 to ∞ against the negative field 𝑒(𝑟) =
−𝜕𝑟𝑊 (𝑟). The integration over 𝑟′ within 0 6 𝑟′ 6 𝑟 vanishes identically in (12)
in analogue with the 𝛿-source physics, 𝑛(𝑟′)→ 𝛿(𝑟′), of the Coulomb potential.

By taking the post-Coulomb solution (11) with the zero Laplace contribution,
𝐶1 = 𝐶2 = 0, one can also verify the integral equality of the electrostatic energy
of the elementary charge density 𝜌(𝑟) in its interaction potential 𝑊 (𝑟) and in the
self-potential Λ,∫︁

𝜌(𝑟)𝑊 (𝑟) d𝑣 =

∞∫︁
0

(−𝑒0)2 ln(1 + 𝑟0/𝑟)

4𝜋𝜖(𝑟 + 𝑟0)2
d𝑟 =

(−𝑒0)2

4𝜋𝜖𝑟0
=

∫︁
𝜌(𝑟)Λ d𝑣. (13)

An integral electrostatic balance of the field energy and the charge energy in
inhomogeneous (interaction) potentials always takes place in Maxwell’s electrody-

namics due to the vector identities 𝑑e = −𝑑∇𝜙 = −∇(𝑑𝜙) + 𝜙∇𝑑 and the Gauss
divergence theorem. Now this general balance equally works in (13) for the elec-
tron’s radial self-energy in the constant potential Λ, when the charge density is “sim-
ply” proportional to the local field energy density. The strict mathematical equality∫︀∞
0

d𝑥[ln(1 + 𝑥−1)]/(1 + 𝑥)2 =
∫︀∞
0

d𝑥/(1 + 𝑥)2 = 1 stands behind our introduction of
the stable radial charge in the constant self-potential Λ. The local electric current and
energy flow densities of the elementary energy carrier are proportional one to another
in this Mie-type electrodynamics.

The conventional Lagrange density is contributed by the partially balanced field
and charge energy terms, (𝜖e 2 − 𝜌𝑊 ) ̸= 0 in the Mie original approach to the
distributed electron. The electrostatic action integral vanishes,

∫︀
(𝜖e 2 − 𝜌𝑊 ) d𝑣 =

ℰ𝑓 − ℰ𝑐ℎ11 = 𝑒20/4𝜋𝜖𝑟0 − 𝑒20/4𝜋𝜖𝑟0 = 0, for the extended particle and field carrier of
electricity even for 𝑟0 → 0. We may require even the complete local balance of the ra-
dial charge and its field energy densities in the EM Lagrangian. Indeed, 𝜌 = −∇2𝑊𝜖
for the distributed charge density and, due to the divergence theorem, the equivalent
EM action

∫︀
[𝜖e 2 − 𝜖(∇𝑊 )2] d𝑣 has the vanishing Lagrange density. This local bal-

ance works for a particle’s equation of motion (after the variations) and completely
removes the balanced electromagnetic energies from the electron’s mass-energy den-
sity 𝑚0𝑛(𝑟). Again, elementary electric currents are actually electric self-energy flows
of the distributed particle-field carrier (8). Therefore, Maxwell-Lorentz’s equations-
equalities (6) should equally represent elementary electric currents and elementary
self-energy flows (with local identical balance of these EM energy flows for particle
and field fractions).
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The mutual interaction energy, ℰ𝑐ℎ12+21(𝑑), of two static electron/positron charges is
determined by their continuous local overlap with the external interaction potentials
𝑊1(�⃗�) ̸=𝑊2(�⃗�) in all world space points, rather than with the uniform self-potentials
Λ1 = ±Λ. This global interaction depends on the space distance 𝑑 = 2𝑧0 between the
particles’ centers of symmetry at (0, 0,−𝑧0) and (0, 0,+𝑧0),

ℰ𝑐ℎ12+21(𝑑) =

∫︁
d𝑣[𝜌1(�⃗�)𝑊2(�⃗�) + 𝜌2(�⃗�)𝑊1(�⃗�)] =

=
(∓𝑒0)(∓𝑒0)

4𝜋𝜖

∫︁
d𝑣

4𝜋

(︂
ln(1 + 𝑟0/𝑟−)

𝑟2+(𝑟+ + 𝑟0)2
+

ln(1 + 𝑟0/𝑟+)

𝑟2−(𝑟− + 𝑟0)2

)︂
, (14)

where 𝑟± =
√︀
𝑥2 + 𝑦2 + (𝑧 ± 𝑧0)2. Extreme values, ±𝑒20/2𝜋𝜖𝑟0 for 𝑑 = 0, of these

astrospace interactions are finite even under the strict coincidence of the particles’ ge-
ometrical centers. For example, the total electron-positron potential energy (two pos-
itive potential self-energies ℰ𝑐ℎ11 and ℰ𝑐ℎ22 , plus the negative interaction energy ℰ𝑐ℎ12+21)

monotonously changes from zero, when 𝑑 = 0, to 2ℰ𝑐ℎ11 = 𝑒20/2𝜋𝜖𝑟0, when 𝑑 → ∞.
Such a huge electrostatic energy of sole charges is fully compensated by their field en-
ergy in the Lagrangian, while the residual electron-positron annihilation energy can
be related only to the particles’ mechanical energy and energy of their gravitational
field.

The potential self and mutual energies of elementary continuous charges contribute
to the potential electric energy of the global charge density overlap, 𝜌(𝑥) =

∑︀
𝑖 𝜌𝑖(𝑥),

in the net local potential, 𝑊 (𝑥) =
∑︀
𝑖𝑊𝑖(𝑥),

ℰ𝑐ℎ𝑔𝑙𝑜 ≡
∫︁

d𝑣

(︂∑︁
𝑘

𝜌𝑘(𝑥)

)︂(︂∑︁
𝑖

𝑊𝑖(𝑥)

)︂
=

∫︁
d𝑣𝜌(𝑥)𝑊 (𝑥) =

=

∫︁
d𝑣e⃗(𝑥)𝑑(𝑥) =

∫︁
d𝑣

(︂∑︁
𝑖

e⃗𝑖(𝑥)

)︂(︂∑︁
𝑘

𝑑𝑘(𝑥)

)︂
≡ ℰ𝑓𝑔𝑙𝑜. (15)

Here we used 𝜌 = ∇𝜖e and the divergence theorem for the integral electrostatic
balance

∫︀
𝜖e 2d𝑣 −

∫︀
𝜌𝑊d𝑣 = 0. Again, equal electrostatic energies of elementary

charges and their fields are bound and balanced even locally. Only very small, residual
imbalance from the electron’s EM energy balance can be expected for the mechanical
part of the elementary Lagrangian with a residual space curvature for the electron’s
rest mass-energy 𝑚0 = 𝑟0/𝐺≪ 𝑒20/4𝜋𝜖𝑟0.

The classical field equations (6) and the rest-frame solution (8) admit Lorentz
transformations of fields for moving frames of reference. Therefore, the continuous
astrocharge (8) may replace the point electron on covariant CED relations. Moreover,
the nonlocal Maxwell electron tends to replicate astrodistributions of the (nine) known
quantum electrons, for example in Bohm’s formulation of quantum theory [10].

At first glance, the uniqueness of the analytical solution (8) for the differential
Poisson equation seems leave no room for extra positive charge solutions in Maxwell’s
theory. The “sole charge” argument was indeed used against Mie’s attempts to re-
interpret all classical charges as continuous field functions. How, for example, could
Classical Electrodynamics specify the difference between positron’s and proton’s spa-
tial structures with equal contents of positive electricity?

3. The positive radial charge

The (astro)proton has to exhibit the opposite electron charge
∫︀
𝜌𝑝d𝑣 = +𝑒0, while

the positive vertex (+𝑒0) in (8) belongs to the (astro)positron. Fortunately for the
Mie theory of continuous matter there are no limitations in Maxwell’s equations, and



Bulyzhenkov I. E. Tesla Energy Space for Mie–Schwinger Continuous Electron 209

in their exact solution (8), on the sign (and the magnitude) of the radial parameter
𝑟0. Therefore, one can coherently describe the elementary positive charge (the static
proton or the sum of dynamical quarks) by replacing the electron’s radial parameter
𝑟0 with a negative number, 𝑟0 → −𝑟𝑝 < 0, and (−𝑒0) with (+𝑒0) in the electron’s field

induction 𝑑. Then, the charge density 𝜌𝑝(𝑟) = ∇𝑑𝑝 of the classical radial proton can
be found analytically at 𝑟 ̸= 𝑟𝑝,{︃

𝑑𝑝(𝑟 > 𝑟𝑝) = r̂𝑒0/4𝜋𝑟(𝑟 − 𝑟𝑝), 𝜌𝑝(𝑟 > 𝑟𝑝) = −𝑒0𝑟𝑝/4𝜋𝑟2(𝑟 − 𝑟𝑝)2 < 0,

𝑑𝑝(𝑟 < 𝑟𝑝) = r̂𝑒0/4𝜋𝜖0𝑟(𝑟𝑝 − 𝑟), 𝜌𝑝(𝑟 < 𝑟𝑝) = +𝑒0𝑟𝑝/4𝜋𝑟
2(𝑟𝑝 − 𝑟)2 > 0.

(16)

These exact solutions of Maxwell’s equations for negative and positive static charge
densities should be agreed with to the (dynamical, fluctuating) neutral spherical front
at 𝑟𝑝. We employ a complex proton parameter 𝑧𝑝 ≡ 𝑟𝑝+ 𝑖𝛿 in order to describe steady
states of baryons (with dynamical sub-charges or substructures) without static state
peculiarities at the pole point 𝑟𝑝. Contrary to the monotonous radial electron, the
radial Maxwell proton has quite complicated spatial substructures. Our description
of the steady (astro)proton in terms of complex continuous fields in 0 6 𝑟 <∞,{︃

𝑑𝑝(𝑟) = r̂𝑒0/4𝜋𝑟|𝑟 − 𝑧𝑝|,
4𝜋𝑟2𝜌𝑝(𝑟) = 4𝜋𝜕𝑟𝑟

2𝑑𝑝(𝑟) = +𝑒0[𝑟𝑝(𝑟𝑝 − 𝑟) + 𝛿2]/[(𝑟 − 𝑟𝑝)2 + 𝛿2]3/2,
(17)

can be interpreted as the quasi-equilibrium approximation of dynamical sub-states
with the averaged parameter 𝑟𝑝 ≡< 𝑟𝑝(𝑡) >𝑡 for the fluctuating neutral front between
positive and negative charge substructures.

The (astro)proton’s electric induction takes the regular Coulomb approximation
4𝜋𝜖𝑑𝑟 = +𝑒0/𝑟

2 > 0 for 𝑟 ≫ 𝑟𝑝 when the continuous proton density 𝜌𝑝(𝑟) ≈
−𝑒0𝑟𝑝/4𝜋𝑟4 is negative. This charge density sharply becomes positive only at very
short proximities, (𝑟2𝑝 + 𝛿2)/𝑟𝑝 ≈ 𝑟𝑝 for 𝛿 ≪ 𝑟𝑝, to the proton’s center of symme-

try. The radial charge distribution 𝑑𝑞(𝑟)/d𝑟 = 4𝜋𝑟2𝜌(𝑟) reaches its extreme positive

and negative rates, ±2𝑒0𝑟𝑝/
√
27𝛿2 at 𝑟𝑝 ∓ (𝛿/

√
2), just next to the neutral charge

front at 𝑟𝑝. Such non-monotonous and very sharp distributions of the charge and field
densities (17) result in enhanced electrostatic self-energy content for the continuous
proton,

𝑒0Λ𝑝 ≡ ℰ𝑐ℎ = ℰ𝑓 =

∫︁
𝑑2𝑝
𝜖
d𝑣 =

𝑒20
4𝜋𝜖𝛿

[︁𝜋
2
+ arctg

(︁𝑟𝑝
𝛿

)︁]︁
≈ 𝑒20

4𝜖𝛿
, (18)

compared to the similar self-energy (7) for the continuous electron.

Now one can apply the Gauss’s flux theorem in order to find an enclosed charge
within different spheres R around the proton’s center:

𝑞𝑝(𝑅) ≡
∫︁
𝑅

𝜌𝑝(𝑟)4𝜋𝑟
2 d𝑟 =

∮︁
𝑅

𝑑𝑝 d�⃗� = +𝑒0
𝑅√︀

(𝑅− 𝑟𝑝)2 + 𝛿2
. (19)

The enclosed charge (19) is always positive and exhibits its observable macroscopic
value 𝑞𝑝(∞) = +𝑒0 for 𝑅 ≫ 𝑟𝑝. This means that the central positively charged
sphere (with the maximum positive content 𝑞(𝑟𝑝) = +𝑒0𝑟𝑝/𝛿 ≫ +𝑒0) is screened by
microcosm of large negative charge −𝑒0(𝑟𝑝 − 𝛿)/𝛿 ≈ −𝑒0𝑟𝑝/𝛿 ≪ −𝑒0. From here
the non-empty world space (EM ether) is charged negatively by both astroelectrons
and astroprotons everywhere apart from protons’ core spheres of very small radius
(𝑟𝑝 = 𝐺𝐸𝑝/𝑐

4 ≈ 1.2× 10−54𝑚).
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4. Conclusions

Our main conclusion is that Mie was conceptually right. Maxwell’s equations-
equalities for locally bound particle and field fractions of the elementary radial carrier
of electricity can describe self-consistently continuous structures of elementary charges
and basic wave modulations within these charged structures. The Dirac operator
density 𝑞𝑘𝛿(�⃗� − �⃗�𝑘) for the formal localization of distributed energy-matter in one
point �⃗�𝑘 can be replaced with the equilibrium radial density 𝑞𝑘𝑛(�⃗�− �⃗�𝑘) = 𝑞𝑘𝑟0/4𝜋(�⃗�−
�⃗�𝑘)

2(|�⃗� − �⃗�𝑘| + 𝑟0)
2, for the nonlocal continuous source in any field point �⃗�. And the

local balance of particle and field EM energy flows (with equal active and passive EM
self-energy densities) is the physical meaning of local Maxwell’s equations-equalities.

The nonlocal continuous electron is free from peculiarities and this Mie–Schwinger
charge can better address the EM current-vs-field density relations than the point elec-
tron, which is “a stranger in electrodynamics” according to Einstein. The considered
static radial densities without rotations are not relevant to the electron’s magnetic
moment and mechanical spin. Practical observations of charged EM matter are given
through dynamics and energy exchanges of inertial (residual) masses-energies. There-
fore, CED energy-balances cannot lead to a complete theory without gravimechanical
equations. There are no charges without masses and Maxwell’s equations ought to be
compatible with the (unknown) mass creation mechanism for the continuous carrier
of distributed electromagnetic and gravitational energies.

Stationary rotational solutions with energy-driven spin states might be on the very
surface of the classical theory of fields. If General Relativity (GR) employs the an-
alytical astrodistribution 𝑚𝑘𝑛(�⃗� − �⃗�𝑘) for the rest-mass energy (together with equal
gravitational field energy), then properties of the combined Einstein-Maxwell radial
sources in non-empty space can be described through classical relativistic notions
(distributed angular momentum, magnetic moments of rotating charge densities, gy-
romagnetic factors, etc.) in agreement with the Lie algebra for the Poincaré group.

The Mie–Schwinger nonlocal astrocharge, distributed over the entire Universe, had
been already replicated by the distributed quantum particle. Nonetheless, only ex-
act analytical relations for continuous sources, rather than dice probabilities for them,
may conceptually justify the non-empty space paradigm and Tesla material ether for
physical reality. According to our computations, the letter is charged negatively every-
where, but in extra-small proton cores. Non-empty space readings of Maxwell’s and
Einstein’s equations through locally paired particle-field (source-sink, active-passive,
yin-yang) flows of elementary energies may be useful for causal replications of quan-
tum objects. In this way, quantum particles may converge with nonlocal classical
particles after proper quantization of their EM-GR energies and angular momentums.
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УДК 539.12
Ми–Швингер протяжённые заряды для энергетического

пространства Тесла
И.Э. Булыженков

Московский физико-технический институт
Физический институт РАН им. Лебедева

Ленинский просп., 53, Москва, 119991, Россия

Постоянный поток Пойтинга–Умова определяет элементарную волну Максвелла–Хеви-
сайда, спиральность которой воспроизводит спиновую закрученность фотонов в кван-
товой физике. Угловой момент такой классической волны требует для её поглощения
или излучения точечных классических зарядов. Подход Тесла к электричеству как к
невидимой энергетической среде между наблюдаемыми телами соответствует найден-
ным радиальным решениям для непрерывного источника. Распределённый электрон
Ми–Швингера встроен в ту же радиальную структуру, что и его кулоновское поле.

В электродинамике Ми–Тесла электрический заряд является не самостоятельным ба-
зовым понятием, а полевым энергетическим распределением при едином, недуалисти-
ческом подходе к материи–энергии в непустом мировом пространстве.

Собственная электрическая энергия в таком нелокальном её носителе является конеч-
ной, несмотря на то, что этот недуальный носитель заполняет бесконечную Вселенную
с материальным эфиром Тесла всюду (без областей с пустым пространством). Непу-
стое пространство вокруг видимых границ лабораторных тел заполнено суммарными
отрицательными плотностями как непрерывных электронов, так и протонов.

Ключевые слова: нелокальные энергетические заряды, непрерывные частицы, па-
радигма непустого пространства.




