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In the present paper a concept of vector nodal finite element has been introduced, algo-
rithms of construction of the vector nodal basis functions with high approximate properties
from special functional spaces are presented. Examples of high-order interpolation of har-
monic, irrotational vector fields by the developed finite elements illustrate their approximate
advantage in comparison with the standard Lagrange elements.
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1. Introduction

The finite elements as independent objects may be used for solving elliptic problems
by different ways such as the finite element method, the volume and boundary integral
equation methods etc. The condition of calculated solutions accuracy is peculiarity
of some practical problems [1]. The known methods and approaches do not always
guarantee it. In this connection, special approaches are elaborated [2, 3]. One of
possible ways to get over the complications is use of special high order approximations.
In the present paper we suggest a new class of finite elements for vector-functions
approximations with high accuracy.

According to the classical definition [4,5], a finite element is a triple (𝜔,𝑃 ,Φ), where
𝜔 ∈ R𝑛 (n=2,3) is a closed subset with a Lipschitzian boundary and with a nonempty
set of inner points often called as a cell or a finite element; 𝑃 is an 𝑚-dimensional
space of functions defined on 𝜔 (usually this is a space of polynomials); Φ is a set of
linearly independent linear functionals 𝐹𝑖 : 𝑃 → R1, 𝑖 = 1, . . . ,𝑚. In the nodal finite
elements 𝐹𝑖(𝜙) is the value of a function 𝜙 at the node 𝑥𝑖 ∈ 𝜔. If for a set of functions
{𝑁𝑗}𝑗=1,...,𝑚 ∈ 𝑃 for each 𝑗 the system of linear algebraic equations

𝐹𝑖(𝑁𝑗) = 𝛿𝑖𝑗 , 𝑖 = 1, . . . ,𝑚, (1)

is solvable, then any function 𝜙 ∈ 𝑃 can be represented in the form 𝜙(𝑥) =
𝑚∑︀
𝑖=1

𝐹𝑖(𝜙)𝑁𝑖(𝑥).

System (1) is used for finding coefficients in the representation and 𝑁𝑖 (1 6 𝑖 6 𝑚) is
called as basis or shape function. Accuracy of interpolation by means of basis func-
tions may be considered as local characteristic of a finite element. Obviously that the
interpolation is exact for functions from 𝑃 .

It should be noted that the finite elements defined above are used for approximation
of scalar functions.

Introduce the notion of a vector nodal finite element.

Definition. Define a vector nodal finite element as a triple (𝜔,P,Ψ), where 𝜔 ∈ R𝑛

is a cell in the classical definition; P is an 𝑛·𝑚-dimensional space of vector-functions

defined on 𝜔. In the Cartesian coordinate system P =
𝑛∑︀
𝑘=1

i𝑘𝑃𝑘, where 𝑃𝑘 is the

𝑛·𝑚-dimensional space of functions in the classical definition; Ψ is a set of linearly
independent linear maps F𝑖: P→ R𝑛, 𝑖 = 1, . . . ,𝑚.
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Let’s call the maps by vector-functionals in view of the fact that F𝑖 =
𝑛∑︀
𝑘=1

i𝑘𝐹
(𝑘)
𝑖 ,

where 𝐹
(𝑘)
𝑖 : 𝑃𝑘 → R1, 𝑖 = 1, . . . ,𝑚, 1 6 𝑘 6 𝑛. In the vector nodal finite elements

F𝑖(u) is the value of a vector-function u at the node 𝑥𝑖 ∈ 𝜔. If for a set of vector-
functions {W𝑘,𝑗}𝑘=1,...,𝑛;𝑗=1,...,𝑚 ∈ P for each 𝑗 the system

F𝑖(W𝑘,𝑗) = i𝑘𝛿𝑖𝑗 , 𝑘 = 1, . . . , 𝑛, 𝑖 = 1, . . . ,𝑚,

is solvable, then any vector-function u ∈ P is represented in the form

u(𝑥) =

𝑛∑︁
𝑘=1

𝑚∑︁
𝑖=1

𝐹
(𝑘)
𝑖 (𝑢𝑘)W𝑘,𝑖(𝑥).

We shall call the vector-functions {W𝑘,𝑗}𝑘=1,...,𝑛;𝑗=1,...,𝑚 by vector nodal basis
functions. Each element of the vector-functions linear span is interpolated on 𝜔 exactly.

Suppose the approximate solution u is found in the form of decomposition on the
vector basis functions W𝑘,𝑖(𝑥) inside a cell

u(𝑥) =

𝑛∑︁
𝑘=1

i𝑘𝑢𝑘(𝑥) =

𝑛∑︁
𝑘=1

𝑚∑︁
𝑖=1

𝑢𝑘,𝑖W𝑘,𝑖(𝑥),

where 𝑢𝑘,𝑖 is the value of 𝑘-th component of approximate solution at the node 𝑥𝑖 of
the cell.

Consider the problem of harmonic, irrotational and solenoidal fields approximation
of high order. For mathematical classification of the introduced finite elements, it is
convenient to use the corresponding functional spaces [6, 7]

Z(Ω) = {u ∈𝑊 1
2 (Ω)

𝑛 : ∇ · u = 0, ∇× u = 0},
U(Ω) = {u ∈𝑊 1

2 (Ω)
𝑛 : ∇ · u = 0, ∇× u ∈ 𝐿2(Ω)

𝑛},
V(Ω) = {u ∈𝑊 1

2 (Ω)
𝑛 : ∇ · u ∈ 𝐿2(Ω), ∇× u = 0},

where𝑊 1
2 (Ω)

𝑛 is a space of vector-functions such that each component of these vector
functions belongs to the Sobolev space𝑊 1

2 (Ω) [4,5]. Suppose also that each component
of the basis functions W𝑘,𝑖(𝑥) is expressed by partial derivatives of scalar functions.
Further, consider a case, when 𝑛 = 3. At 𝑛 = 2 similar results are valid.

2. Algorithms of basis functions construction, characteristics
of accuracy

2.1. Harmonic fields

Let u ∈ Z(Ω). In such a case, we seek the solution in the form

u(𝑥) =

3∑︁
𝑘=1

𝑚∑︁
𝑖=1

𝑢𝑘,𝑖Z𝑘,𝑖(𝑥).

Here, Z𝑘,𝑖(𝑥) is basis function from Z(Ω).
Represent Z𝑘,𝑖 in the form

Z𝑘,𝑖(𝑥) =

3𝑚∑︁
𝑙=1

𝑎
(𝑘,𝑖)
𝑙 ∇𝑓𝑔(𝑙)(𝑥),
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where 𝑎
(𝑘,𝑖)
𝑙 is unknown coefficient, 𝑔(𝑙) is an index function, 𝑓𝑔(𝑙) is harmonic function

from the set

𝑀𝑍 =

{︂
𝑐𝑛,𝑘

(︂
𝑟

𝜌

)︂𝑛
cos(𝑘𝜙)𝑃 𝑘𝑛 (cos𝜗), 𝑐𝑛,𝑘

(︂
𝑟

𝜌

)︂𝑛
sin(𝑘𝜙)𝑃 𝑘𝑛 (cos𝜗),

(𝑛, 𝑘) = (0, 0); (1, 0), (1, 1); (2, 0), (2, 1), (2, 2); . . .

}︂
; (2)

in the spherical coordinate system (𝑟, 𝜗, 𝜙) 𝜌 is radius of the circumscribed sphere,
𝑐𝑛,𝑘 = (2𝑛+1)(𝑛−𝑘)/(𝑛+𝑘)!, 𝑃 𝑘𝑛 is the Legendre joined function. The functions from
𝑀𝑍 are calculated by recursion relations [8]. The unknown coefficients are obtained
as a result of solving the systems

3𝑚∑︁
𝑙=1

𝑎
(𝑘,𝑖)
𝑙 ∇𝑓𝑔(𝑙)(𝑥𝑗) = i𝑘𝛿𝑖𝑗 ; 𝑓𝑔(𝑙) ∈𝑀𝑍 ; 𝑥𝑗 ∈ 𝜔, 𝑗 = 1, . . . ,𝑚;

𝑘 = 1, 2, 3; 𝑖 = 1, . . . ,𝑚. (3)

Accuracy of approximations by the basis functions depends on degree of harmonic
polynomials, gradients of which are included in (3). To construct the index function
𝑔(𝑙), a special algorithm, elaborated by the authors, is described below.

2.2. Irrotational fields

As u(𝑥) ∈ V(Ω), the solution is found in the form

u(𝑥) =

3∑︁
𝑘=1

𝑚∑︁
𝑖=1

𝑢𝑘,𝑖V𝑘,𝑖(𝑥),

where

V𝑘,𝑖(𝑥) =

3𝑚∑︁
𝑗=1

𝑏
(𝑘,𝑖)
𝑗 ∇ℎ𝑔(𝑗)(𝑥).

Here, 𝑏
(𝑘,𝑖)
𝑗 is unknown coefficient, 𝑔(𝑗) is an index function, ℎ𝑔(𝑗), 𝑗 = 1, . . . ,𝑚, are

functions from the set

𝑀𝑉 = {𝑥𝑘11 𝑥𝑘22 𝑥𝑘33 , (𝑘1, 𝑘2, 𝑘3) = (0, 0, 0); (1, 0, 0), (0, 1, 0), (0, 0, 1);

(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1), (0, 0, 2); . . .}. (4)

The unknown coefficients are obtained as a result of solving the systems

3𝑚∑︁
𝑙=1

𝑏
(𝑘,𝑖)
𝑙 ∇ℎ𝑔(𝑙)(𝑥𝑗) = i𝑘𝛿𝑖𝑗 ; ℎ𝑔(𝑙) ∈𝑀𝑉 ; 𝑥𝑗 ∈ 𝜔, 𝑗 = 1, . . . ,𝑚;

𝑘 = 1, 2, 3; 𝑖 = 1, . . . ,𝑚. (5)

For construction of the index function 𝑔(𝑙), the same algorithm is used. Accuracy
of approximations by the basis functions depends on degree of polynomials from 𝑀𝑉 ,
gradients of which are included in (5).
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2.3. Solenoidal fields

Let u ∈ U(Ω) and u(𝑥) = ∇×A, where A =
3∑︀
𝑙=1

i𝑙𝐴𝑙 is a vector potential. Then

the case of solenoidal fields is reduced to previous one in view of the formula

u(𝑥) = ∇×A(𝑥) =

3∑︁
𝑙=1

(∇𝐴𝑙 × i𝑙) =

3∑︁
𝑙=1

(︃(︃
3∑︁
𝑘=1

𝑚∑︁
𝑖=1

(∇𝐴𝑙)𝑘,𝑖V𝑘,𝑖(𝑥)

)︃
× i𝑙

)︃
,

where (∇𝐴𝑙)𝑘,𝑖 is the 𝑘-th component of the vector ∇𝐴𝑙 at the node 𝑥𝑖 ∈ 𝜔 and
V𝑘,𝑖(𝑥) ∈ V(Ω), 𝑘 = 1, 2, 3, 𝑖 = 1, 2, . . . ,𝑚. Accuracy of the approximations depends
on degree of polynomials, gradients of which are included in the representation for
V𝑘,𝑖.

2.4. Algorithm of index function generation

The algorithm is based on control of solvability of systems (3), (5) with the help
of calculation of matrix singular values by the SVD algorithm [9]. Assume that the
initial approximation is given as first numbers of functions from sets (2), (4): 2, . . . , 𝑛0,
2 < 𝑛0 < 3𝑚. Set 𝑞 = 𝑛0 + 1 and 𝑞max = 30. The algorithm consists of three steps.

1) Form the matrix of the system and use the set of 3𝑚 elements

{2, . . . , 𝑛0, 𝑞, 2, . . . , 2}

as values of the function 𝑔. Here, number 𝑞 of the next function is located on a position
with number 𝑛0.

2) Find singular values by the SVD algorithm.
3) If there are 3𝑚 − 𝑛0 + 1 zeros among of the matrix singular values, then set

𝑞 = 𝑞 + 1; if 𝑞 < 𝑞max, then go to step 1). If there are 3𝑚 − 𝑛0 zeros among of the
matrix singular values and 𝑛0 ̸= 3𝑚, then 𝑛0 = 𝑛0 +1, 𝑞 = 𝑞+1 and go to step 1). If
𝑛0 = 3𝑚, then the required values set of 𝑔 has been constructed.

2.5. Examples of vector nodal finite elements

Vector finite elements can include different types of cells 𝜔 and can have different
location of nodes in the cells. Let us consider on 6 elements with basis functions from
the spaces Z(Ω), V(Ω), U(Ω) as an example of three-dimensional vector nodal finite
elements. Information about type of the cell, number of nodes and their location, and
also about structure of the sets 𝑀𝑍 and 𝑀𝑉 is presented in Table 1 and in Figs. 1–3.

Table 1
Characteristics of elements

Type Z(Ω) V(Ω),U(Ω)

of cell 𝑚 / 𝑁 𝐷 𝐷max 𝑚 / 𝑁 𝐷 𝐷max

4 / 12 2 3 4 / 12 2 3
Tetrahedron 10 / 30 4 5 10 / 30 3 5

26 / 78 7 9 27 / 81 5 7

8 / 24 3 5 15 / 45 3 6
Hexahedron 20 / 60 6 8 23 / 69 5 7

26 / 78 7 9 45 / 135 5 9
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Figure 1. Cell in the form of a
tetrahedron: ∙ - 4 nodes; ∙, ∘ - 10
nodes; ∙,∘,* - 26 nodes; ∙,∘,*,⋆ - 27

nodes

Figure 2. Cell in the form of a
hexahedron : ∙ - 8 nodes; ∙, ∘ - 20

nodes; ∙,∘,* - 26 nodes

Figure 3. Cell in the form of a hexahedron : ∙ - 15 nodes; ∙, ∘ - 23 nodes; ∙,* -
45 nodes

In Table 1 𝑚 is the number of nodes, 𝑁 is the number of vector functions from the
linear span, 𝐷 is the maximal order of polynomials whose gradients are approximated
by the basis functions exactly, 𝐷max is the maximal order of polynomials contained
in the basis functions. Note that the vector nodal finite elements from Z(Ω) have not
inner nodes.

Let us define the space P from Definition in more detail. By P(𝑡,𝑁, 𝑍) and
P(ℎ,𝑁,𝑍) we denote the sets of 𝑁 vector-functions from Z(Ω) defined on a tetrahe-
dron and on a hexahedron, respectively. Moreover, each element of linear spans of
the sets is approximated by the basis functions exactly. Similarly, for the sets from
V(Ω), the notation P(𝑡,𝑁, 𝑉 ), P(ℎ,𝑁, 𝑉 ) is introduced. Then, for the finite elements
in Table 1, we have

P(𝑡,𝑁1, 𝑍) =

{︃
v =

𝑁1∑︁
𝑖=1

𝑐𝑖∇𝑓𝑔(𝑖), 𝑐𝑖 ∈ R1, 𝑓𝑔(𝑖) ∈𝑀𝑍 , 𝑔(𝑖) ∈ 𝐼𝑡𝑁1

}︃
,
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P(ℎ,𝑁2, 𝑍) =

{︃
v =

𝑁2∑︁
𝑖=1

𝑐𝑖∇𝑓𝑔(𝑖), 𝑐𝑖 ∈ R1, 𝑓𝑔(𝑖) ∈𝑀𝑍 , 𝑔(𝑖) ∈ 𝐼ℎ𝑁2

}︃
,

P(𝑡,𝑁3, 𝑉 ) =

{︃
v =

𝑁3∑︁
𝑖=1

𝑐𝑖∇ℎ𝑔(𝑖), 𝑐𝑖 ∈ R1, ℎ𝑔(𝑖) ∈𝑀𝑉 , 𝑔(𝑖) ∈ 𝐽 𝑡𝑁3

}︃
,

P(ℎ,𝑁4, 𝑉 ) =

{︃
v =

𝑁4∑︁
𝑖=1

𝑐𝑖∇ℎ𝑔(𝑖), 𝑐𝑖 ∈ R1, ℎ𝑔(𝑖) ∈𝑀𝑉 , 𝑔(𝑖) ∈ 𝐽ℎ𝑁4

}︃
,

for 𝑁1 = 12, 30, 78, 𝑁2 = 24, 60, 78, 𝑁3 = 12, 30, 81, 𝑁4 = 45, 69, 135. Here, the index
sets 𝐼𝑡𝑁1

, 𝐼ℎ𝑁2
, 𝐽 𝑡𝑁3

, 𝐽ℎ𝑁4
are the sets of values for corresponding functions 𝑔. Their

structure is given in Table 2 and Table 3.

Table 2
Structure of the index sets for harmonic finite elements

Set Elements of the set

𝐼𝑡12 2,3, . . . 13

𝐼𝑡30 2,3, . . . 29,31,32

𝐼𝑡78 2,3, . . . ,78,82

𝐼ℎ24 2,3, . . . , 19,21,22,23,
25,30,34

𝐼ℎ60 2,3, . . . , 56,58,62,66,67,73

𝐼ℎ78 2,3, . . . , 75,81,82,83,84

Table 3
Structure of the index sets for irrotational finite elements

Set Elements of the set

𝐽 𝑡12 2,3, . . . , 10,12,15,17

𝐽 𝑡30 2,3, . . . , 20,22,23,26, . . . , 30,32,37,42,46

𝐽 𝑡81 2,3, . . . ,71,74,75,78,82,83,86,87,93,94,95,99

𝐽ℎ45 2,3, . . . , 20,22,23,24,26, . . . , 34,37,
. . . ,40,42, . . . , 48,58,64,67

𝐽ℎ69 2,3, . . . , 56,58,60,64, . . . ,69,71,73,75,76,94,96

𝐽ℎ135 2,3, . . . , 56,58,. . . , 62,64, . . . , 83,86, . . . , 91,
93, . . . , 116,118,119,122, . . . , 126,130, . . . ,
137,139,143,145, . . . , 148,152,177,179,181

3. Examples of interpolation by the vector nodal finite
elements

Consider three examples. Let 𝛽 be a number of example. Also introduce the
notation

𝛿
(𝜎)
𝛽 = max

𝑥∈𝜔
|Q− I𝜎(Q)|/𝑄max,
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where 𝜎 defines the type of finite elements, Q is a vector-function under interpolation
on 𝜔, 𝑄max is its maximal value on the considered region, I𝜎(Q) is the interpolant

I𝜎(Q) =

3∑︁
𝑘=1

𝑚∑︁
𝑖=1

𝑄𝑘,𝑖W𝑘,𝑖(𝑥),

where 𝑚 is the number of nodes in the cell, 𝑄𝑘,𝑖 is the value of 𝑘-th component at
the node 𝑥𝑖, W𝑘,𝑖 is the vector basis function. Table 4 gives the basic notation. Here,
𝑁𝑖(𝑥) denotes a usual Lagrange basis function [4, 5].

Table 4
Notation

𝜎 Nodal finite elements W𝑘,𝑖(𝑥)

1 vector harmonic Z𝑘,𝑖(𝑥)
2 vector irrotational V𝑘,𝑖(𝑥)
3 scalar Lagrange’s elements i𝑘𝑁𝑖(𝑥)

Example 1. The harmonic function interpolated on the unit cube [−1, 1]3 has the
following form:

H(7)(𝑥) = ∇

(︃
7∑︁

𝑛=0

𝑟𝑛
𝑛∑︁
𝑘=0

𝑐𝑛,𝑘(cos(𝑘𝜙) + sin(𝑘𝜙))𝑃 𝑘𝑛 (cos𝜗)

)︃
,

i.e. it is the sum of harmonic functions gradients from the set 𝑀𝑍 up to seventh
order. Note that H(7) varies strongly in the considered region: 0.5211 6 |H(7)| 6
0.11357𝐸 + 04. Then, we have Q(𝑥) = H(7)(𝑥), 𝑄max = 𝐻max = 0.11357𝐸 + 04.

Example 2. The harmonic magnetic field of two coaxial coils interpolated on the
region [40, 50]3:

B𝑆(𝑥) = ∇× 1

4𝜋

∫︁
Ω𝑆

J

|𝑥− 𝑦|
dΩ𝑦,

where, |𝑥− 𝑦| is the distance between points 𝑥 and 𝑦. The coil region Ω𝑆 is given by
the following set:

Ω𝑆 = {𝑥 = (𝑟, 𝜙, 𝑧) : 53 6 𝑟 6 100; 0 6 𝜙 6 2𝜋; 60 6 sign(𝑧)𝑧 6 85},

J(𝑥) = 𝜋(116.348)i𝜙, 𝑥 ∈ Ω𝑆 . Here, Q(𝑥) = B𝑆(𝑥), 𝑄max = 𝐵0 = 0.2909375𝐸 + 04.

Example 3. The sum of polynomials gradients up to seventh order interpolated
on the unit cube [−1, 1]3:

P(7)(𝑥) =
7∑︁

|𝑘|=1

∇(𝑥𝑘11 ·𝑥
𝑘2
2 ·𝑥

𝑘3
3 ); |𝑘| = 𝑘1 + 𝑘2 + 𝑘3, 𝑘𝑖 > 0, 𝑖 = 1, 2, 3.

Here, Q(𝑥) = P(7)(𝑥), 𝑄max = 𝑃max = 0.3637307𝐸 + 03.

Interpolation of the vector-functions from Examples 1– 3 has been performed by
the finite elements of different types. Comparison of the obtained results is shown in
Table 5.

It should be noted thatH(7)∈ Z((−1, 1)3),B𝑆 ∈ Z((40, 50)3) andP(7) ∈ V((−1, 1)3).
As one would expect, for Examples 1,2, the best interpolations have been obtained by
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Table 5
Comparison of interpolations

𝜎 𝑚 / 𝑁 𝛿
(𝜎)
1 𝛿

(𝜎)
2 𝛿

(𝜎)
3

8/24 1.0632E+00 1.3927E-03 4.4309E-01
1 20/60 2.1227E-03 2.5963E-04 6.8534E-01

26/78 1.5206E-15 8.6087E-06 3.1766E-01

15/45 1.1059E+00 1.3085E-03 2.1898E-01
2 23/69 1.1654E+00 4.2181E-04 6.3755E-02

45/135 5.6569E-01 1.7243E-04 1.1083E-02

27/27 6.7378E-01 7.9872E-04 1.8074E-01
3 64/64 2.4368E-01 1.0137E-04 6.4156E-02

125/125 6.4104E-02 9.5325E-06 1.5832E-02

means of the harmonic element ( 𝜎 = 1, 𝑚 = 26, 𝑁 = 78). The same it is necessary
to tell concerning the irrotational nonharmonic element (𝜎 = 2, 𝑚 = 45, 𝑁 = 135) in
Example 3. Moreover, for these interpolations the smaller number of nodes is required
in two-four times, than the comparable in accuracy interpolations with the help of the
usual Lagrange one.

4. Conclusion

To obtain high-order approximations for vector fields, we have introduced a concept
of vector nodal finite element. In particular, the theoretical basis and the algorithms
for constructions of the new class of finite elements have been elaborated for harmonic,
irrotational and solenoidal fields. The new formulas for representation of approxima-
tions and special choice of basis functions from the corresponding functional spaces
provide high order in this approach.The numerical examples, presented in the paper,
show that harmonic and irrotational nonharmonic vector nodal finite elements for
vector-functions from corresponding classes give the best approximations with smaller
number of nodes than the Lagrange elements. This corresponds to the finite element
method theory because the space of vector-functions P in Definition has dimension
of 𝑛·𝑚 whereas in the Lagrange elements the space 𝑃 is an 𝑚-dimensional space of
functions.

The basis functions of the suggested finite elements with computer accuracy satisfy
to homogeneous equations for intensity of magnetic field in air, ferromagnetic and
current regions. This property can essentially reduce computing work for solving the
magnetostatic problem in comparison, for example, with the standard hp-version of
the finite element method. To obtain algebraic systems of equations, the principles
of the discontinuous Galerkin schemes construction or the methods from [10] may be
used. Note that enough efficient algorithms for solvers are given in [11].
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УДК 519.63, 519.651
Векторные узловые конечные элементы высокого порядка с

гармоническими, безвихревыми и соленоидальными
базисными функциями

О.И. Юлдашев, М. Б. Юлдашева
Лаборатория информационных технологий

Объединённый институт ядерных исследований
ул. Жолио-Кюри д. 6, Дубна, Московская область, 141980, Россия

В настоящей работе вводится понятие векторного узлового конечного элемента, пред-
ставлены алгоритмы построения векторных узловых базисных функций с высокими
аппроксимационными свойствами из специальных функциональных пространств. При-
меры интерполяции с высоким порядком точности гармонических, безвихревых полей
с помощью разработанных конечных элементов иллюстрируют их аппроксимационные
преимущества по сравнению со стандартными лагранжевыми элементами.

Ключевые слова: векторные узловые конечные элементы, гармонические, без-
вихревые, соленоидальные базисные функции, интерполяционные многочлены, аппрок-
симации высокого порядка.




