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1. Introduction

An interesting class of intelligent materials are magnetic fluids, or ferrofluids,
which without magnetic field are homogeneous colloidal suspensions of ferromagnetic
nanoparticles coated with surface-active dispersive medium (typical diameters of par-
ticles range from 5 to 10 nm) in a carrier liquids [1]. Ferrohydrodynamics describes
evolution of a magnetic fluid, carrying a magnetic field. The continuous models of
ferrohydrodynamics have been studied in recent years from different points of view.
Dynamic processes in a magnetic fluid can be described in continual approximation
for two limiting cases. One of them corresponds to the equilibrium magnetization of
the magnetic fluid [2], i.e., the case where the relaxation time characterizing the mag-
netization relaxation to the equilibrium value is infinitely small. The other limiting
case corresponds to the situation where the magnetic fluid possesses a frozen mag-
netization [3], i.e., the case where the relaxation time is infinitely large. A complete
system of equations describing an ideal non-conducting magnetic fluid with the frozen
magnetization was obtained in [3]. As shown in [4,5], the linear approximation of ferro-
hydrodynamics equations for the fluid with frozen magnetization describes adequately
experimental data for the anisotropy of ultrasonic velocity in magnetized magnetic flu-
ids based on the various liquids. The complete system of equations describing an ideal

nonconducting magnetic fluid of density 𝜌 with the frozen-in magnetization �⃗� = 𝜌�⃗�
has the form [3]:
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(1)

The system of equations is closed by setting a specific form of the internal energy
density per unit mass 𝜖 = 𝜖 (𝜌, 𝑠,𝑚𝑖) which depends on fluid density 𝜌 = 𝜌 (�⃗�, 𝑡), the
specific entropy 𝑠 = 𝑠 (�⃗�, 𝑡), and the components of the magnetization per unit mass
𝑚𝑖 = 𝑚𝑖 (�⃗�, 𝑡) . The specific feature of system (1) is the equation for the magnetization
that express the condition of the magnetization is frozen in a magnetic fluid. The latter
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two equations of system (1) are the Maxwell magnetostatic equations, where Ψ is a
scalar potential of the magnetic field.

The purpose of this work is to obtain the Hamiltonian equations of ferrohydrody-
namics with frozen magnetization.

2. Hamiltonian Description of the Ideal
Nonconducting Magnetic Fluid with Frozen

Magnetization

The functional of the total energy of the magnetized nonconducting fluid is repre-
sented in the form
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Then, the action functional with the Lagrangian with constraints is determined by
the formula
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where the functions 𝛼 , 𝜙 and 𝜆𝑛, (𝑛 = 1, 2, 3) are the Lagrangian multipliers, and by
the twice repeating index, summation from 1 to 3 is performed.

The extended Lagrangian set of equations [6,7] follow upon setting the functional
derivative of the action functional to zero:
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= 0, (3)

where 𝑎𝑖 = {𝜙𝑖, 𝑣𝑖, 𝑝𝑖}, 𝜙𝑖 = (𝜌, 𝑠,𝑚𝑛), 𝑝𝑖 = (𝜙, 𝛼, 𝜆𝑛).
Clebsch representation for the hydrodynamic momentum density is determined by

the formula
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If we then introduce a generalized momentum conjugate to generalized coordi-
nates 𝜙𝑖 = (𝜌, 𝑠,𝑚𝑛) and construct the extended Hamiltonian of the system as the
Legendre transformation, then we obtain that (i) the Lagrange multipliers in the ex-
tended Hamiltonian formalism play the role of generalized momentum 𝑝𝑖 and (ii) the
extended Hamiltonian does not contain nonphysical variables, or Lagrangian multipli-
ers, and coincides with the functional of the total energy (2). As a result, taking into
account (4), the system (3) is equivalent to the extended Hamiltonian system
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3. Poisson Brackets Method in
Ferrohydrodynamics

Let us show the way in which the Hamiltonian equations for physical variables is
obtained in the context of the method of Poisson brackets. The results presented below
are obtained using formula (2) for the Hamiltonian of ferrohydrodynamics, formula (4)
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for the hydrodynamic momentum, and a known property of the Poisson bracket (see,
e.g., [6, 8]):
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into account (4) and requiring the resultant density of hydrodynamic forces to be
independent of velocity, we obtain (see also [6, 8, 9]):
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Therefore, the Hamiltonian equations of motion are formulated taking into ac-
count (2) and the set of commutation relations presented above. They have the fol-
lowing final form:
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It is easy to notice that these Hamiltonian equations coincide with the equations of
system (1).

4. Conclusion

Therefore, in this work, the Hamiltonian set of equations of ferrohydrodynamics
(5) is for the first time constructed with the use of Hamiltonian (2) of the system and
of the method of Poisson brackets.

We can apparently affirm that the experimental verification of the suggested Hamil-
tonian theory will allow one to create the complete theory of ferrohydrodynamics.
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УДК 537.84
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Дано гамильтоново описание уравнений феррогидродинамики для идеальной непро-
водящей сжимаемой магнитной жидкости с вмороженной намагниченностью.
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