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Two new higher-order accurate finite-difference schemes for the numerical solution of
boundary-value problem of the Burgers’ equation are suggested. Burgers equation is a one-
dimensional analogue of the Navier-Stokes equations describing the dynamics of fluids and
it possesses all of its mathematical properties. Besides the Burgers’ equation, one of the few
nonlinear partial differential equations which has the exact solution, and it can be used as a
test model to compare the properties of different numerical methods. A first scheme is pur-
posed for the numerical solution of the heat equation. It has a sixth-order approximation in
the space variable, and a third-order one in the time variable. A second scheme is used for
finding a numerical solution for the Burgers’s equation using the relationship between the
heat and Burgers’ equations. This scheme also has a sixth-order approximation in the space
variable. The numerical results of test examples are found in good agreement with exact
solutions and confirm the approximation orders of the schemes proposed.
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1. Introduction

We consider a one-dimensional quasi-linear parabolic partial differential equation
which is known as Burgers’ equation

ou ou 0%u

E+u%:1/@, a<z<b >0, (1)

with an initial condition
u(z,0) = p(z), a<z<b, (2)

and boundary conditions
u(a,t) = f(t) and wu(b,t) =g(t), t>0, (3)

where v > 0 is a coefficient of the kinematic viscosity and ¢(z), f(t) and g¢(t) are
known functions.

The Burgers’ equation can be considered as an approach to the Navier-Stokes
equations [1,2]. Since both contain nonlinear terms of the type: unknown functions
multiplied by a first derivative and both contain higher-order terms multiplied by a
small parameter. On the other hand, the Burgers’ equation is one of a few nonlinear
equations which can be solved exactly for an arbitrary initial and boundary conditions
[3]. However these exact solutions are impractical for the small values of viscosity
constant due to a slow convergence of series solutions. Thus many numerical schemes
are constructed for a numerical solution of the Burgers’ equation for small values of
viscosity constant which corresponds to a steep front in the propagation of dynamic
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wave forms [3-8]. The study of the general properties of the Burgers’ equation has
motivated considerable attention due to its applications in field as diverse as number
theory, gas dynamics, heat conduction, elasticity, etc. [3]. The extended version of
this paper will be published elsewhere.

We consider the Burgers’ equation (1) with the initial condition
u(z,0) =sin(rz), 0<z <1, (4)
and the Dirichlet boundary conditions
u(0,t) =u(1,t) =0, ¢t>0. (5)
It is well known that, by the Hopf-Cole transformation

9 (x,1)

u(x,t) = —2v I, D) (6)

the Burgers’ equation transforms to the linear heat equation

0V (z,t) V8219(x,t)

e R 0O<z<l1l, t>0 (7)
with initial condition
Y (x,0) = exp (—W) , 0<zxz<l, (8)
and Neumann boundary conditions
9(0,t) =9'(1,t) =0, t>0. 9)

Symbol “’” denotes the derivative with respect to variable x. Thus, if ¥(z,t) is
any solution of the heat equation (7) subject to the conditions (8) and (9), then the
function (6) is a solution of the Burgers’ equation (1) with the conditions (4) and (5).

We assume that the numerical solution of the heat problem defined by Eqgs. (7)-(9)
is found by any of known methods with higher accuracy. For example, this problem
can be solved by well-known Crank-Nicolson scheme [9] and a more accurate explicit
scheme proposed by Zhanlav in [10]

_ B 2y
ot = D Dot BY gnggn pgn ) 2 g, 10
7 B"’ﬁyl B_F,Y(zfl 7 z+l) ﬁ"‘"}/l ( )
2
vzig,i:L“wN—L Nh=1, n=1,2,....

Here and throughout the work, ¥} is the approximate solution at the mesh points
(x; = ih,t, = nT), where h is a spatial step, 7 is a time step. Easy to show that the
scheme (10) is stable and its truncation error is of the order O(73 4 h%) provided that

TV 1
—02, L= 11
ﬁ h2 /60 ( )

When 5 =1, the scheme (10) leads to the well-known DuFort-Frankel’s one [9].

It should be mentioned that the scheme (10) is a three-level one in time. Hence, in
order to find U7 at level two it requires two values 97 at level 0 and 1, i.e., ¥? and ¥}.
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Using the Taylor expansion of ¥(x,7) at point (z,0) and Eq. (7), we obtain

9%0(2,0)  v? 9(x,0)

_ 3
Ha,7) = Hx,0) + v R S v +O(7°). (12)

From Eq. (12) values of 9} were obtained.

2. Construction of Higher-Order Accurate Finite-difference
Schemes for Spatial Variable

The solution domain {(x,t) : = € [0,1],¢ € (0,00)} is discretized into cells de-
scribed by the node set (z;,t,) in which x; = ih, t, = n7r,i = 0,1,...,N, Nh =
Ln=01...

We suppose that the solution of Eqgs. (7)—(9) is a sufficiently smooth function with
respect to « and ¢. So, from the Taylor expansions of ¥(z;4+1,t) and ¥(z;_1,t) at point
(x;,t) we have

I(@it1,t) —V(@im1,t) V@i t) o | 0P (@ist) 6
= i’ 7 1
5T W (xi, t) + 5 h* + 120 h*+ O(h°) (13)
19,(.Ti+1, t) — 219/(1’@‘, t) + 19/($i_1, t) ’19(5) (C(,‘i, t)

—l.lem =" (x;,t) + h: +O(h*). (14)

2
Eliminating ¥ from (13) and (14), we obtain

12

19(5(,‘1‘_;,_1, t) — 19(5(31‘_1, t) B 19,(.%1‘4,_1, t) + 419/(1’1‘, t) + 19’(%‘1‘_1, t) B

2h 6

_ 19(5)(.1’1‘, t)
180

Omitting the small term in the right-hand side of the obtained finite-difference scheme:

h* + O(h®). (15)

(3

2h 6 ’

O — 0 0 + 40 + 0

i=1,2,...,N—1. (16)

The truncation error of this scheme is O(h*). Finding ¢’ from (6) and substituting
it into (16), we obtain a compact finite-difference scheme for approximate solution
Yyl = y(xg, ty) of u(x,, ty):

n 61/ n
Vi gy 407y 0yt = T (ﬁib—&-l - 19?—1) ) (17)

i=1,2,...,N—1, n=12,...

with boundary conditions

yo =yn =0 (18)
If we denote v = 97y, then the scheme (17), (18) leads to

vy = vy = 0. (20)
The last system has a unique solution set (v§,vl,...,v}%) since its the matrix is

diagonally dominant. It means that the tridiagonal system (17), (18) has a unique
solution set (y¢,y7, ...,yp) for each n = 1,2,..., and it can be solved by efficient
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elimination method [11]. Moreover, it is also possible to obtain a higher accurate
finite-difference scheme than (17), (18).
Using the Taylor expansions of ¥(x;42,t) and ¥(x;_o,t) at the point (z;,t) we have

19(.%'“,2, t) —’19(1,'1',2, t)
4h

19”’(32‘1‘, t) 4h2 4 19(5) (.I‘i, t)

4 6
- o0 L6ht 0%, (21)

:19/(1‘1', t) +

We can eliminate the term with 9(®) (z;,¢) from (21) and (13). As a result we have

V(@it1,t) —d(@im1,t) (@i, t) — V(@iz2, 1)

1
6 2h 4h
= 159 (4, t) + 29" (x4, t)h* + O(h®). (22)
We also use the well-known five-point approximation formula for ¢ (x;, t)
1
"= o (—9;_y +169;_1 — 300; + 169, | — U, ,) + O(hY), (23)

which holds for sufficiently smooth function ¥(x,t) with respect to = variable. Sub-
stituting (23) into (22) and using the Hopf-Cole transformation given by Eq. (6) we
obtain

vy — 160;; — 60v;" — 160 | + vi'y = 7, (24)

3v .
= (=97 o + 3207 — 3207, +97,), i=2,3,...,N —2.
Of course, besides of vj = v}, = 0 we need additionally two end conditions v{ and
v _, in order to solve the system (24). Differentiating Eq. (7) (2k — 1)-times with

respect to x, and taking into account (9), we obtain

n
¢

DD (g, 8) = 9D 2y, 8) =0, k=0,1,... (25)
Then from (13) it follows that
19(1'1,15) :ﬂ(x—bt)v 19(1‘]\74‘1’75) :'l9<l'N_1,t), (26)

where z_1 = 29— h and xn41 = xy + h. Also differentiating Eq. (6) (2k)-times with
respect to z, and taking into account (25), we have

v(2k) (zo,t) = v?F) (zn,t) =0, k=0,1,... (27)

Then substituting (27) in Taylor expansions of v(z1,t) and v(xx+1,t) at the point
xo and x, respectively, we conclude that

v(x1,t) = —v(z_1,t), v(zny1,t) =—v(zNn_1,1). (28)

Hence, taking into account (26) and (28), the finite-difference scheme (24) for
i =1, N — 1 has the forms

3
—6107 — 160] + v} = —% (3207 — 9™ — 3207 + 97) (29)

Thus, we have five-point finite-difference schemes (24), (29) with truncation error
O(h").
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3. Numerical Results

In this section we demonstrate the accuracy of the proposed finite-difference schemes
(10), (11), (24), (29) by solving exact solvable Burgers’ equation (1), (4), (5) for v =1
and compare the numerical results with the existing results. The computations are
performed using MatLab.

Table 1 displays convergence of the proposed schemes for the numerical solution
y(x;, T) to the exact solution u(x;, T) at T = (10v/15)~! versus the number of nodes

N. Table 2 presents the maximum absolute error ||e||o = | max ly(x;, T) —u(z;, T)|
NV —

versus the number of nodes N.

Table 1
Convergence of the proposed schemes for the numerical solution y(z;,T) to the
exact solution u(z;,T) versus the number of nodes N. Here v =1, T = (10/15) "

Y

Numerical solution

N =10

N =20

N =40

N =280

Exact solution

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.228649
0.437766
0.608777
0.725196
0.774045
0.747568
0.645016
0.474055
0.251102

0.22865030
0.43776771
0.60877832
0.72519674
0.77404614
0.74756837
0.64501619
0.47405491
0.25110176

0.2286503154
0.4377677345
0.6087783451
0.7251967567
0.7740461512
0.7475683734
0.6450161825
0.4740549069
0.2511017581

0.2286503156451
0.4377677347901
0.6087783454149
0.7251967569572
0.7740461512588
0.7475683733302
0.6450161823893
0.4740549067930
0.2511017580559

0.2286503156477
0.4377677347942
0.6087783454190
0.7251967569600
0.7740461512595
0.7475683733289
0.6450161823870
0.4740549067907
0.2511017580546

Table 2

The maximum absolute error ||e|l = max |y(z;,T) — u(z;,T)| between

1<iSN—1
numerical and exact solutions versus the number of nodes N, and
corresponding Runge coefficients

N lelloo
10 | 1.058410630083717¢-006

lellon/llell on 2

20 | 1.679794564557469e-008 63.008
40 | 2.635179296994750e-010 63.744
80 | 4.136968545509490e-012 63.698

From Tables 1, 2 we observed that the numerical results obtained by proposed
schemes are reasonably in good agreement with the exact solution. The corresponding
Runge coefficients are consistent with the theoretical expectation of O(hS).
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Kparkoe onucanme BHICOKOTOYHOTO METO/Ia YMCJIEHHOTO
penieHusi ypaBHeHus Bioprepca
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IIpenyioxkensl JiBe HOBblE PA3HOCTHBIE CXEMBI MOBBIIIEHHON TOYHOCTH JIJIS YUCJIEHHOTO pe-
IIEHUs HAYaJbHO-KPAeBOU 3a/adm ypasHeHHsi Bioprepca. YpasHeHue bBioprepca siBisercs
OJ/THOMEpHBIM aHaJsioroM ypasBHeHust HaBbe—CTOKCa, ONUCHIBAIONIETO IUHAMUKY YKUIKOCTH, U
obJialaeT BCEMU ero MaTeMaTHIecKuMu cBoiicTBamu. Kpome Toro, ypasuenune Broprepca or-
HOCUTCHA K YHMCJIy HEMHOI'MX HEJIMHEHHBIX ypaBHEHUN B YaCTHBIX IIPOU3BOAHDIX, IJISI KOTOPBIX
M3BECTHO aHAJUTUYIECKOE DEIeHUe, YTO II03BOJISIET UCIIOJIL30BaTh €ro B KadeCTBE TECTOBOM
MOJIEJIN JJ1s1 CDABHEHUSI CBOMCTB Pa3JIMYHbIX YHUCJIEHHBIX MeTOOB. [lepBas cxema, npegnasHa-
YeHHas [JIs 9MCJIEHHOI'O PelIeHUs] YPaBHEHUsl TEeNJIONPOBOAHOCTH, UMeeT IIeCTON IIOPAIOK
ANIIPOKCUMAIIMU 110 HPOCTPAHCTBEHHON IIEPEMEHHON M TPeTUil IOpsAA0K IO BPEMEHHOMU IIe-
peMmeHnHOI. Bropas cxeMa MCIIOJIB3yeTCsl JJI HAXOXKJIEHNUS YUCJIEHHOTO PEeIlleHHsl ypPaBHEHUS
Broprepca Ha ocHOBe CBS3U MezK/ly ypaBHEHHEM TEIIOIIPOBOIHOCTH ¢ ypaBHeHHeM Broprepca.
JlaHHast cxema Tak»Ke MMEET IIEeCTOU MOPSAIOK AIIPOKCUMAIIU 10 MPOCTPAHCTBEHHON Iepe-
MenHo#t. [losyuennbie HA TECTOBBIX IPUMEPAX UUCIEHHDBIE PE3YIHTATHI XOPOIIO COrIACYIOTCS
C aHAJINTUYECKUMH PeIIeHUsIMU ypaBHeHUsI Bioprepca u oaTBepzKIal0T MOPIOK AllIPOKCH-
MalluU IPEeIJIOZKEHHBIX CXEM.

KuroueBrnie cioBa: ypaBHeHue Broprepca, MOBBINIEHHON TOYHOCTH YHUCJIEHHOI'O DeIe-
HUSI.





