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It is assumed that the introduction of stochastic in mathematical model makes it more ade-
quate. But there is virtually no methods of coordinated (depended on structure of the system)
stochastic introduction into deterministic models. Authors have improved the method of sto-
chastic models construction for the class of one-step processes and illustrated by models of
population dynamics. Population dynamics was chosen for study because its deterministic
models were sufficiently well explored that allows to compare the results with already known
ones.

To optimize the models creation as much as possible some routine operations should be
automated. In this case, the process of drawing up the model equations can be algorithmized
and implemented in the computer algebra system. Furthermore, on the basis of these results
a set of programs for numerical experiment can be obtained.

The computer algebra system Axiom is used for analytical calculations implementation.
To perform the numerical experiment FORTRAN and Julia languages are used. The Runge–
Kutta method for stochastic differential equations is used as numerical method.

The program complex for creating stochastic one-step processes models is constructed. Its
application is illustrated by the predator-prey population dynamic system.

Computer algebra systems are very convenient for the purposes of rapid prototyping in
mathematical models design and analysis.

Key words and phrases: stochastic differential equations; “predator–prey” model;
master equation; Fokker–Planck equation; computer algebra software; Axiom system.

1. Introduction

This work corresponds our research on mathematical models stochastization. This
item is interesting due to the following problems: the construction of population
models from first principles and the introduction of the stochastic into such models
(the population dynamics is studied because of similar models introduction in other
areas).

The problem of stochastic term introduction arises during mathematical models
stochastization. There are several ways to solve this problem. The easiest option is an
in the deterministic equation. But when additive stochastic term is introduced some
free parameters that require further definition appears. Furthermore, these stochas-
tic terms usually interpreted as an external (rather than structural) random impact.
In this regard, we used and improved the stochastic one-step processes models con-
struction method, based on master equation [1, 2]. Stochastic differential equation is
considered as its approximate form. It allows to get the model equations from general
principles. Furthermore, deterministic and stochastic parts are derived from the one
equation so we can regard it as stochastic and deterministic parts consistency.

The aim of this work is the software complex development for rapid prototyping
construction of stochastic one-step processes models. This complex consists of two
blocks. The first block generates the equations of dynamic stochastic process model on
the principles similar to chemical kinetic relations describing the investigated process.
This block is implemented by means of the computer algebra system— system FriCAS,
which is offshoot of Axiom.

The second block is used for the numerical analysis of the resulting model. For
numerical solution of deterministic and stochastic models equations some Runge–
Kutta different orders methods [3, 4] are used.
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To illustrate the developed system the well-known population model predator–prey
is used [5–7].

The structure of the paper is as follows. The basic notation and conventions
are introduced in Section 2. Section 3 is devoted to brief introduction to the one-
step processes stochastization method. Further, in the Section 4 the model under
investigation is described. In the subsection 4.1 there is a brief reference to standard
(deterministic) approach, and in the subsection 4.2 the stochastic extension of our
model with the help of the one-step processes stochastization method is obtained.

In the Section 5.1 we justify selection of the system, which implements the model
equations generating unit. The actual interface of this part of the program complex
is described in the Section 5.2.

The possibility of applying Runge–Kutta methods for the analysis of stochastic
differential equations is considered in the Section 6. The software interface of the
model equations numerical analysis unit is also described in this section. Calculations
example is based on the predator–prey model.

2. Notations and Conventions

1. We use abstract indices notation [8]. In this notation tensor as a whole object is
denoted just as an index (e.g., 𝑥𝑖), components are denoted by underlined index
(e.g., 𝑥𝑖).

2. We will adhere to the following agreements. Latin indices of the middle of the
alphabet (𝑖, 𝑗, 𝑘) will apply to the space of the system state vectors. Latin
indices from the beginning of the alphabet (𝑎) will relate to the Wiener process
space. Latin indices from the end of the alphabet (𝑝, 𝑞) will refer to the indices
of the Runge–Kutta method. Greek indices (𝛼) will set a number of different
interactions in kinetic equations.

3. A Dot over a symbol denotes differentiation with respect to time.
4. The comma in the index denotes partial derivative with respect to corresponding

coordinate.

3. One-Step Processes Modeling

Let’s briefly review the method of one-step processes stochastization on the basis
of [9].

We understand one-step processes as Markov processes with continuous time with
values in the domain of integers, which transition matrix allows only transitions be-
tween neighbouring portions. Also, these processes are known as birth-and-death
processes.

One-step processes are subject to the following conditions:
1. If at the moment 𝑡 the system is in state 𝑖 ∈ Z>0,then the probability of transition

to state 𝑖+ 1 in time interval [𝑡, 𝑡+Δ𝑡] is equal to 𝑘+Δ𝑡+ 𝑜(Δ𝑡).
2. If at time moment 𝑡 the system is in state 𝑖 ∈ Z+,then the probability of transition

to state 𝑖− 1 in the time interval [𝑡, 𝑡+Δ𝑡] is equal to 𝑘−Δ𝑡+ 𝑜(Δ𝑡).
3. The probability of transition to a state other than the neighbouring is equal to
𝑜(Δ𝑡).

4. The probability to remain in the same state is equal to 1− (𝑘+ + 𝑘−)Δ𝑡+ 𝑜(Δ𝑡).
5. State 𝑖 = 0 is an absorbing boundary.
The idea of the one-step processes stochastization method is as follows. Based on

the patterns of interaction we construct a master kinetic equation, expand it into a
series, leaving only the terms up to and including the second derivative. The resulting
equation is the Fokker–Planck equation. In order to get more convenient model we
record corresponding Langevin equation. In fact, as we shall see , from the patterns of
interaction we will immediately obtain the coefficients of the Fokker–Planck equation
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(and accordingly, the Langevin equation), so for practical use of the method there is
no need to construct the master kinetic equation.

3.1. Interaction Schemes

We will describe the state of the system by a state vector 𝑥𝑖 ∈ R𝑛, where 𝑛 is the
system dimension (the state vector is considered as the set of mathematical values,
fully describing system). The operator 𝑛𝑖𝑗 ∈ Z𝑛>0×Z𝑛>0 defines the state of the system

before the interaction and the operator 𝑚𝑖
𝑗 ∈ Z𝑛>0 ×Z𝑛>0 — after the interaction. The

result of interaction is a system transition to another state [1, 10].
There are 𝑠 kinds of different interactions that may happen in the system, 𝑠 ∈ Z+.

So, instead of 𝑛𝑖𝑗 and 𝑚𝑖
𝑗 let’s consider the operators 𝑛𝑖𝛼𝑗 ∈ Z𝑛>0 × Z𝑛>0 × Z𝑠>0 and

𝑚𝑖𝛼
𝑗 ∈ Z𝑛>0 × Z𝑛>0 × Z𝑠>0.
System elements interaction will be described with the interaction schemes similar

to chemical kinetic schemes [11]:

𝑛𝑖𝛼𝑗 𝑥
𝑗
𝑘+𝛼


𝑘−𝛼

𝑚𝑖𝛼
𝑗 𝑥

𝑗 . (1)

Here Greek indices specify the number of interactions and Latin ones specify dimen-
sionality of the system. The state change is given by the operator

𝑟𝑖𝛼𝑗 = 𝑚𝑖𝛼
𝑗 − 𝑛𝑖𝛼𝑗 . (2)

Thus, one-step interaction 𝛼 in forward and opposite directions can be written as

𝑥𝑖 → 𝑥𝑖 + 𝑟
𝑖𝛼

𝑗 𝑥
𝑗 ,

𝑥𝑖 → 𝑥𝑖 − 𝑟
𝑖𝛼

𝑗 𝑥
𝑗 .

(3)

We can write (1) not in the form of vector equations, but in the more traditional
form sums:

𝑛𝑖𝛼𝑗 𝑥
𝑗𝛿𝑖

𝑘+𝛼


𝑘−𝛼

𝑚𝑖𝛼
𝑗 𝑥

𝑗𝛿𝑖, (4)

where 𝛿𝑖 = (1, . . . , 1).

Also, we will use the following notation:

𝑛𝑖𝛼 := 𝑛𝑖𝛼𝑗 𝛿
𝑗 , 𝑚𝑖𝛼 := 𝑚𝑖𝛼

𝑗 𝛿
𝑗 , 𝑟𝑖𝛼 := 𝑟𝑖𝛼𝑗 𝛿

𝑗 . (5)

3.2. Master Equation

Transition probabilities per unit of time from the state 𝑥𝑖 to the state 𝑥𝑖 + 𝑟
𝑖𝛼

𝑗 𝑥
𝑗

(to the state 𝑥𝑖 − 𝑟
𝑖𝛼

𝑗 𝑥
𝑗) are proportional to the number of 𝑥𝑖 combination from a set

of 𝑛𝑖𝛼 elements (of 𝑥𝑖 — combinations from a set of 𝑚𝑖𝛼) and are given by:

𝑠+𝛼 = 𝑘+𝛼

𝑛∏︁
𝑖=1

𝑥𝑖!

(𝑥𝑖 − 𝑛𝑖𝛼)!
,

𝑠−𝛼 = 𝑘−𝛼

𝑛∏︁
𝑖=1

𝑥𝑖!

(𝑥𝑖 −𝑚𝑖𝛼)!
.

(6)
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Thus, the general form of the master kinetic equation for the states vector 𝑥𝑖 (it

changes by 𝑟
𝑖𝛼

𝑗 𝑥
𝑗 per step), takes the form:

𝜕𝑝(𝑥𝑖, 𝑡)

𝜕𝑡
=

𝑚∑︁
𝛼=1

{︁[︁
𝑠−𝛼 (𝑥

𝑖 + 𝑟𝑖𝛼, 𝑡)𝑝(𝑥𝑖 + 𝑟𝑖𝛼, 𝑡)− 𝑠+𝛼 (𝑥
𝑖)𝑝(𝑥𝑖, 𝑡)

]︁
+

+
[︁
𝑠+𝛼 (𝑥

𝑖 − 𝑟𝑖𝛼, 𝑡)𝑝(𝑥𝑖 − 𝑟𝑖𝛼, 𝑡)− 𝑠−𝛼 (𝑥
𝑖)𝑝(𝑥𝑖, 𝑡)

]︁}︁
. (7)

3.3. Fokker–Planck Equation

With the help of the Kramers–Moyal expansion, the Fokker–Planck equation [11]
is obtained. For this purpose we will make several assumptions:

1) there are only small jumps, ie 𝑠𝛼(𝑥
𝑖) is a slowly varying function with the change

of 𝑥𝑖;
2) 𝑝(𝑥𝑖, 𝑡) also slowly changes with the change of 𝑥𝑖.

Then in Fokker–Planck equation (7) one can shift from the point (𝑥𝑖 ± 𝑟
𝑖𝛼

𝑗 𝑥
𝑗) to the

point 𝑥𝑖, and by expanding the right-hand side in a Taylor series and dropping terms
of order higher than the second, we obtain Fokker–Planck equation:

𝜕𝑝

𝜕𝑡
= −𝜕𝑖

[︀
𝐴𝑖𝑝

]︀
+

1

2
𝜕𝑖𝜕𝑗

[︀
𝐵𝑖𝑗𝑝

]︀
, (8)

where

𝐴𝑖 := 𝐴𝑖(𝑥𝑘, 𝑡) = 𝑟𝑖𝛼
[︁
𝑠+𝛼 − 𝑠−𝛼

]︁
,

𝐵𝑖𝑗 := 𝐵𝑖𝑗(𝑥𝑘, 𝑡) = 𝑟𝑖𝛼𝑟𝑗𝛼
[︁
𝑠+𝛼 − 𝑠−𝛼

]︁
, 𝛼 = 1,𝑚.

(9)

As seen from (9), the coefficients of the Fokker–Planck equation can be obtained
directly from (2) and (6), i.e. in practical calculations, there is no need to write the
master equation.

3.4. Langevin Equation

The Langevin equation corresponds to the Fokker–Planck equation:

d𝑥𝑖 = 𝑎𝑖d𝑡+ 𝑏𝑖𝑎d𝑊
𝑎, (10)

where 𝑎𝑖 := 𝑎𝑖(𝑥𝑘, 𝑡), 𝑏𝑖𝑎 := 𝑏𝑖𝑎(𝑥
𝑘, 𝑡), 𝑥𝑖 ∈ R𝑛 — is the system state vector, 𝑊 𝑎 ∈

R𝑚 — 𝑚-dimensional Wiener process. Wiener process is implemented as d𝑊 =
𝜀
√
d𝑡, where 𝜀 ∼ 𝑁(0, 1) is normal distribution with average 0 and variance 1. Latin

indices from the middle of the alphabet denote the values related to the state vectors
(dimension of the space is 𝑛), and Latin indices from the beginning of the alphabet
denote the values related to the Wiener process vector (dimension of the space is
𝑚 6 𝑛).

The connection between the equation (8) and (10) expressed by the following re-
lationships:

𝐴𝑖 = 𝑎𝑖, 𝐵𝑖𝑗 = 𝑏𝑖𝑎𝑏
𝑗𝑎. (11)

We will use Ito interpretation. Under the Ito interpretation, differential of complex
functions does not obey the standard formulas of analysis. To calculate it rule or Ito
lemma are used.
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Let 𝑓 := 𝑓(𝑥𝑘, 𝑡) is a function of a random process 𝑥𝑘(𝑡), 𝑓 ∈ C2. Then the formula
of the differential is [12]:

d𝑓 =

[︂
𝜕𝑡𝑓 + 𝑎𝑖𝑓,𝑖 +

1

2
𝑏𝑖𝑎𝑏

𝑖𝑎𝑓,𝑖𝑗

]︂
d𝑡+ 𝑏𝑖𝑎𝑓,𝑖d𝑊

𝑎, (12)

where 𝑓 := 𝑓(𝑥𝑘, 𝑡), 𝑎𝑖 := 𝑎𝑖(𝑥𝑘, 𝑡), 𝑏𝑖𝑎 := 𝑏𝑖𝑎(𝑥
𝑘, 𝑡), and d𝑊 𝑎 := d𝑊 𝑎(𝑡).

4. Predator–Prey Model

4.1. Deterministic Predator–Prey Model

Systems with the interaction of two predator-prey populations types are extensively
studied and there are a lot of various models for these systems. The very first predator-
prey model is considered to be a model which was obtained independently by A. Lotka
and V. Volterra. Lotka in [13] described some hypothetical chemical reaction:

𝐴
𝑘1−→ 𝑋

𝑘2−→ 𝑌
𝑘3−→ 𝐵, (13)

where 𝑋,𝑌 are intermediates substances, coefficients 𝑘1, 𝑘2, 𝑘3 are rates of chemical
reactions, 𝐴 is a initial reagent, and 𝐵 is a resultant. As a result was a system of
differential equations: {︃

�̇� = 𝑘1𝑥− 𝑘2𝑥𝑦,

�̇� = 𝑘2𝑥𝑦 − 𝑘3𝑦.
(14)

This system is identical to the system of differential equations, obtained by Volterra,
who considered the growth mechanism of two populations with predator–prey interac-
tion type. In order to get equations [5] Volterra made a series of idealized assumptions
about nature of intraspecific and interspecific relationships in the predator–prey sys-
tem.

4.2. Stochastic Predator–Prey Model

Consider a model of predator–prey system, consisting of two individuals species,
one of which hunts, second is provided with inexhaustible food resources. Let’s in-
troduce the notation, where 𝑋 is a prey and 𝑌 is a predator, then we can write the
possible processes (4) for the state vector 𝑥𝑖 = (𝑋,𝑌 )𝑇 [14–17]:

𝑋
𝑘1−→ 2𝑋, 𝑟𝑖1 = (1, 0)𝑇 ,

𝑋 + 𝑌
𝑘2−→ 2𝑌, 𝑟𝑖2 = (−1, 1)𝑇 ,

𝑌
𝑘3−→ 0, 𝑟𝑖3 = (0,−1)𝑇 ,

(15)

which have the following interpretation. The first relation means that the prey which
eats the food unit immediately reproduced. The second relation describes the case
when predator absorbs the prey and then it is instantaneously reproduced. Only such
possibility of prey death is considered. Last ratio is a natural predator death.
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All processes are irreversible, so 𝑠−𝛼 = 0, and

𝑠+1 (𝑥, 𝑦) = 𝑘1
𝑥!

(𝑥− 1)!

𝑦!

𝑦!
= 𝑘1𝑥,

𝑠+2 (𝑥, 𝑦) = 𝑘2
𝑥!

(𝑥− 1)!

𝑦!

(𝑦 − 1)!
= 𝑘2𝑥𝑦,

𝑠+3 (𝑥, 𝑦) = 𝑘3
𝑥!

𝑥!

𝑦!

(𝑦 − 1)!
= 𝑘3𝑦.

(16)

With the help of the formula (8) we have the Fokker–Planck equation:

𝜕𝑝(𝑥, 𝑦)

𝜕𝑡
= −𝜕𝑖

(︀
𝐴𝑖(𝑥, 𝑦)𝑝(𝑥, 𝑦)

)︀
+

1

2
𝜕𝑖𝜕𝑗

(︀
𝐵𝑖𝑗(𝑥, 𝑦)𝑝(𝑥, 𝑦)

)︀
, (17)

where
𝐴𝑖(𝑥, 𝑦) = 𝑠+𝛼 (𝑥, 𝑦) 𝑟

𝑖𝛼,

𝐵𝑖𝑗(𝑥, 𝑦) = 𝑠+𝛼 (𝑥, 𝑦)𝑟
𝑖𝛼𝑟𝑗𝛼.

(18)

As a result:

𝐴𝑖(𝑥, 𝑦) =

(︂
1

0

)︂
𝑘1𝑥+

(︂
−1

1

)︂
𝑘2𝑥𝑦 +

+

(︂
0

−1

)︂
𝑘3𝑦 =

(︂
𝑘1𝑥− 𝑘2𝑥𝑦

𝑘2𝑥𝑦 − 𝑘3𝑦

)︂
,

𝐵𝑖𝑗(𝑥, 𝑦) =

(︂
1

0

)︂
(1, 0)𝑘1𝑥+

(︂
−1

1

)︂
(−1, 1)𝑘2𝑥𝑦 +

+

(︂
0

−1

)︂
(0,−1)𝑘3𝑦 =

(︂
𝑘1𝑥+ 𝑘2𝑥𝑦 −𝑘2𝑥𝑦
−𝑘2𝑥𝑦 𝑘2𝑥𝑦 + 𝑘3𝑦

)︂
.

(19)

In order to write a stochastic differential equation in Langevin form (10) for
predator–prey model, it is enough to take the square root of the resulting matrix
𝐵𝑖𝑗 in Fokker–Planck equation

d

(︂
𝑥

𝑦

)︂
=

(︂
𝑘1𝑥− 𝑘2𝑥𝑦

𝑘2𝑥𝑦 − 𝑘3𝑦

)︂
d𝑡+ 𝑏

𝑖

𝑎

(︂
d𝑊 1

d𝑊 2

)︂
,

𝑏
𝑖
𝑎𝑏
𝑗𝑎 = 𝐵𝑖𝑗 =

(︂
𝑘1𝑥+ 𝑘2𝑥𝑦 −𝑘2𝑥𝑦
−𝑘2𝑥𝑦 𝑘2𝑥𝑦 + 𝑘3𝑦

)︂
.

(20)

It should be noted that the specific form of the matrix 𝑏𝑖𝑎 is not written out because
of the extreme awkwardness of the expression. However, with further studies we will
need not actually matrix 𝑏𝑖𝑎, but its square, i.e. the matrix 𝐵𝑖𝑗 .

5. Implementation of the One-Step Stochastic Processes
Model in the Computer Algebra System

5.1. Justification of the Computer Algebra System Choice

Let’s consider systems of analytical calculations, Maxima and Axiom. Maxima is
the first system of analytical calculations and it is written in Lisp. Maxima successfully
runs on all modern operating systems: Windows, Linux and UNIX, Mac OS and
even on PDA running Windows CE/Mobile. Documentation is integrated into the
program as a handbook with search. There is no distinction between objects and data
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in Maxima, and there is no clear distinction between the operator and function. There
is no integrated graphics rendering in the system.

Unlike Maxima Axiom language is strongly typified for better mathematical objects
and relationships display. The mathematical basis is written in Spad language. Axiom
portability is slightly worse: the system runs under Linux, UNIX, and graphs does
not work under Windows. Axiom has its own graphics subsystem.

In 2007 two Axiom open source forks appeared: OpenAxiom and FriCAS. Open
Axiom is developed by adhering to the ideology of Axiom, problems that occurred
in the Axiom are eliminated. FriCAS developers reorganized the assembly process,
expanded functionality. Furthermore, FriCAS supports not only GCL, which operates
on limited number of platforms, but ECL, Clisp, sbcl or openmcl, that allows to run
FriCAS under wider range of platforms.

5.2. Implementation Description in the Axiom Computer Algebra
System

Method of one-step processes randomization is organized as a module for the
FriCAS computer algebra system. To display all the calculations on the screen the
variable SHOWCALC:=true is used. To call the method you need to use the main func-
tion, which has the following view:

osp(Matrix(Integer), Matrix(Integer), Vector, Vector, Vector)

where the first argument is before interaction states matrix 𝑛𝑖𝑗 , the second argument

is after interaction states matrix 𝑚𝑖
𝑗 , the third argument is the vector 𝑘+𝛼 , the fourth

argument is the vector 𝑘−𝛼 , the fifth argument is the state vector 𝑥𝑖. Let’s consider
the features of the language FriCAS on auxiliary functions. For example, the function
calcProd is used to simplify the calculations 𝑠+𝛼 and 𝑠−𝛼 . In the implementation of
the function operator of the condition and built-in function reduce are used:

calcProd : (Matrix(Integer), Vector, Integer, Integer) -> Void
calcProd (n, x, a, i) ==

nai:Integer := n(a,i)
if nai = 0 then 1 else reduce(*,[x(i) - j for j in 0..(nai-1)])

In the function Bi intermediate calculations for elements of the matrix 𝐵𝑖𝑗 are
made:

Bi (rv, sp, sm, i) == rv(i) * (transpose rv(i)) * (sp(i) + sm(i))

In order to use the module for predator–prey system model, we call the function
with the following arguments:

osp ([[1,0],[1,1],[0,1]],[[2,0],[0,2],[0,0]],
vector([k1,k2,k3]), vector([0,0,0]),vector([x,y]))

Fig. 1 represents the result obtained in TEXmacs shell. In fact, we repeated the
results obtained in (19).
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Figure 1. The output of the module for predator–prey model in graphic
TEXmacs shell

6. Numerical Experiment for the Program Complex

6.1. Stochastic Runge–Kutta Methods

Euler–Maruyama method is one of well-known numerical methods for solving SDE,
it is a special case of a more general Stochastic Runge–Kutta method. Classical Runge–
Kutta method can be generalized to the case of the SDE system (10) in the following
manner [3, 4]:⎧⎨⎩𝑋𝑖

𝑘 =𝑥𝑖0 + ℎ𝑅
𝑙

𝑘𝑎
𝑖(𝑋1

𝑙 , . . . , 𝑋
𝑛
𝑙 ) + ̂︀𝑅𝑙𝑘𝐽𝛼𝑏𝑖𝛼(𝑋1

𝑙 , . . . , 𝑋
𝑛
𝑙 ),

𝑥𝑖1 =𝑥𝑖0 + ℎ𝑟𝑙𝑎𝑖(𝑋1
𝑙 , . . . , 𝑋

𝑛
𝑙 ) + 𝑟𝑙𝐽𝛼𝑏𝑖𝛼(𝑋

1
𝑙 , . . . , 𝑋

𝑛
𝑙 ).

(21)

Indexes 𝑘 = 1, . . . , 𝑠 and 𝑙 = 1, . . . , 𝑛 refer to stochastic Runge–Kutta method.
𝐽 ∼ 𝑁(0, ℎ) or 𝐽 ∼

√
ℎ𝜀, 𝜀 ∼ 𝑁(0, 1) are normal distributed random variables. Such

a choice of these numerical values for approximation is made because the Wiener
process is implemented as d𝑊 = 𝜀

√
d𝑡. You should also pay attention to double

summation in the third term of both numerical scheme formulas as well as the fact
that each number 𝐽1, . . . , 𝐽𝑛 should generated separately.

The method coefficients, as well as for the classical analogue, can be grouped into
a table called the Butcher table:

𝑅𝑖𝑗 �̂�𝑖𝑗

𝑟𝑗 𝑟𝑗

.
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For calculations we used a method with the table

0 0 0 0 0 0

2/3 0 0 2/3 0 0

−1 1 0 −1 1 0

0 3/4 1/4 0 3/4 1/4

6.2. Software Implementation Description

The purposes of the programs complex were to automate the SDE coefficients 𝐴𝑖

and 𝐵𝑖𝑗 computation with the help of general principles described above, and to find
a numerical solution of the equation obtained by means of stochastic Runge–Kutta
methods. From a programming standpoint we can derive three subtasks:
1. coefficients 𝐴𝑖 and 𝐵𝑖𝑗 generation using the computer algebra system;
2. generation of source code in languages Fortran and Julia, implementing the SDE

on the basis of the coefficients, saved as a text file;
3. writing subroutines/functions implementing stochastic Runge–Kutta methods in

Fortran and Julia, and their subsequent compilation together with automatically
generated source codes.

As a result of its work Axiom module creates a text file which contains the coeffi-
cients 𝐴𝑖 and 𝐵𝑖𝑗 in the following form:

# A
A[1]
...
A[N]
# B
B[1,1] B[1,2] .. B[1,N]
...
B[N,1] B[N,2] .. B[N,N]

Matrix 𝑏𝑖𝛼 =
√︀
𝑏𝑖𝛼𝑏

𝑗𝛼 =
√
𝐵𝑖𝑗 is calculated numerically with the help of the singular

value matrix decomposition (a subroutine DGESVD from library LAPACK is used).
For the second subtask scripting language Python was chosen (version 3). This

language has a wide set of tools to work with strings and text files. Except matrices
𝐴𝑖 and 𝐵𝑖𝑗 additional information about the mathematical model was specified as
dictionary (standard data type in Python), with model name, list of variables, list
of parameters, initial values of variables, parameters values and parameters of the
numerical method (integration section and step size).

On the basis of these data, the script automatically generates two files functions.f90
and main.f90, where the first is a module with functions defining the SDE, and the
second one is a main program file. While compiling these files the third additional
module with auxiliary procedures with Stochastic Runge–Kutta method is added.

6.3. The Numerical Experiment Description

For the programs complex work verification a well-known predator–prey model was
chosen with vector 𝑎𝑖 components

𝑎1 = 𝛼𝑥− 𝛽𝑥𝑦, 𝑎2 = −𝛾𝑦 + 𝛿𝑥𝑦 (22)

and matrix 𝐵𝑖𝑗 : [︂
𝛼𝑥+ 𝛽𝑥𝑦 −𝛽𝑥𝑦
−𝛽𝑥𝑦 𝛽𝑥𝑦 + 𝛾𝑥

]︂
, (23)

𝑥 is the number of preys, 𝑦 is the number of predators. Coefficients also have the
following physical (biological) meaning: 𝛼 is the growth rate of the prey population, 𝛽
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is a frequency of predators and prey meetings, 𝛾 is an intensity of predators death or
migration in a lack of preys, 𝛿 is a predator population growth rate on the assumption
of the excess of the prey.

During numerical simulations it was taken into account that the value of variables
𝑥, 𝑦 could not be less than zero (program stop working when one of the variables
becomes equal to zero).

Numerical simulation shows that the addition of stochastic to the classical predator–
prey model leads to the fact that after a certain time death of one of the competing
species comes. So, for the following parameters: 𝛼 = 10, 𝛽 = 1.5, 𝛾 = 8.5, 𝛿 = 1.8 and
the initial values: 𝑥 = 9.7, 𝑥 = 6.77, victims are first to die, and after that predators
die due to lack. This case is illustrated in Fig. 2. For comparison in Fig. 3 is a graph
for the deterministic case.
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Figure 2. Stochastic predator–prey model, prey die
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Figure 3. Deterministic predator–prey model

Under other conditions (𝛼 = 10, 𝛽 = 1.5, 𝛾 = 8.5, 𝛿 = 0.5, 𝑥 = 22, 𝑦 = 6.76)
predators die, and the number of victims is increasing rapidly, as for their model
assumes an infinite source of food. Graphics for this case are shown in Fig. 4, and
Fig. 5 shows for comparison with deterministic case.
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Figure 4. Stochastic predator–prey model, predators die

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
tn

5

10

15

20

25

x
n
 и

 y
n
 —

 p
re

ys
 a

nd
 p

re
da

to
rs

 q
ua

nt
ity

Deterministic predator-prey model

Preys quantity
Predators quantity

Figure 5. Deterministic predator–prey model

7. Conclusions

This work demonstrates the application of the developed initial physical system
formalization method. The system is presented in the form of one or more one-step
processes. Formalization of the system is done by introducing the evolution operator.
Wherein the analytical description of the model requires a lot of routine operations.
To simplify the work we propose to use the computer algebra system (Axiom fork
FriCAS).

We have developed an analytical software package block that receives inlet evolu-
tion operator and produces the SDE, which describes the original model. For numeri-
cal studies of obtained SDE system a second software unit that converts the resulting
system of equations into the program code in Fortran and gives its numerical solu-
tion was developed. Thus, the software system is applicable for both analytical and
numerical study of the original model.

Currently the software package does not cover all possibilities, incorporated in
the proposed method of formalizing the original physical system. Since the original
system description uses ODE, we should introduce the boundary conditions by ties
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or indicator functions. Partial differential equations can help to solve this problem.
Further objective is the development of a complete software complex for a method of
one-step original physical system model construction.
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УДК 004.94, 519.21
Программный комплекс стохастического моделирования

одношаговых процессов
Е. Г. Еферина, А.В. Королькова, М.Н. Геворкян,

Д.С. Кулябов, Л.А. Севастьянов
Кафедра прикладной информатики и теории вероятностей

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Нашим коллективом разработана методика согласованного (зависящего от структуры
системы) введения стохастики в детерминистические модели. На данном этапе методика
ограничена классом одношаговых процессов.

Для оптимизации работы по созданию моделей следует автоматизировать как можно
больше рутинных операций. В данном случае процесс составления уравнений модели
можно алгоритмизировать и реализовать в системе компьютерной алгебры. Кроме того,
на базе этих результатов можно получить и набор программ для проведения численного
эксперимента.

Для реализации аналитических расчётов используется система компьютерной алгеб-
ры Axiom. Для проведения численного эксперимента используются языка FORTRAN и
Julia. В качестве численного метода используется метод Рунге–Кутты для стохастиче-
ских дифференциальных уравнений.

Разработан программный комплекс для создания стохастических моделей одношаго-
вых процессов. Проиллюстрировано его применение на примере системы популяционной
динамики типа «хищник–жертва». Детерминистические модели для таких процессов до-
статочно хорошо исследованы, что позволяет сравнить полученные результаты с уже
известными.

Системы компьютерной алгебры очень удобны для целей быстрого прототипирования
при создании и исследовании математических моделей.

Ключевые слова: стохастические дифференциальные уравнения; модель «хищник–
жертва»; основное кинетическое уравнения; уравнение Фоккера–Планка; системы ком-
пьютерной алгебры; система Axiom.
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