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A waveguide with a constant, simply connected section .S is considered under the
condition that the substance filling the waveguide is characterized by permittivity
and permeability that vary smoothly over the section S, but are constant along
the waveguide axis. Ideal conductivity conditions are assumed on the walls of the
waveguide. On the basis of the previously found representation of the electromagnetic
field in such a waveguide using 4 scalar functions, namely, two electric and two
magnetic potentials, Maxwell’s equations are rewritten with respect to the potentials
and longitudinal components of the field. It appears possible to exclude potentials
from this system and arrive at a pair of integro-differential equations for longitudinal
components alone that split into two uncoupled wave equations in the optically
homogeneous case. In an optically inhomogeneous case, this approach reduces the
problem of finding the normal modes of a waveguide to studying the spectrum of
a quadratic self-adjoint operator pencil.

Key words and phrases: waveguide, normal modes, hybridization of normal modes,
eigenvalue problem, quadratic operator pencils

1. Introduction

Consider a waveguide representing a cylinder of constant cross-section S
filled with an optically inhomogeneous substance, which we will characterize
with a permittivity and a permeability. Hereinafter, we will make use of
a Cartesian coordinate system, the Oz-axis of which coincides with the
waveguide axis. We will assume that the permittivity and permeability do not
depend on z, but are piecewise smooth functions of x,y. The normal modes
of a waveguide are non-trivial solutions of Maxwell’s equations of the form

Bla )i, H(a,y)eits= i, (1

satisfying the conditions of ideal conductivity of the waveguide walls. Here
the positive parameter w is the circular frequency of the wave, k = w/c is the
wave number, and the complex parameter [ is the phase constant.
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Substitution of the expression (1) into Maxwell’s equations yields 8 equa-
tions for 6 unknowns E_, ..., H,, containing two parameters, k and (. It is
usually assumed that the wavenumber of the considered waves is given, and
then we get an eigenvalue problem with respect to the spectral parameter (.
This problem was successfully solved in the case of constant ¢ and p, thanks
to the introduction of two scalar potentials, the electric and magnetic Borgnis
functions v and v [1], [2]. In the attempt to study a general case undertaken
in the beginning of 2000s [3]-[5], it was not possible to introduce potentials
and the problem was investigated with respect to three randomly chosen field
components. With this approach, the normal waves of the waveguide turned
out to be eigenfunctions of some non-self-adjoint quadratic operator pencil
acting in a space specially selected by the functional.

Not all properties of a hollow waveguide can be extended to the case
of a waveguide filled with an optically inhomogeneous substance. We can
confidently reject the hypothesis of the field decomposition into TE- and
TM-waves, since the existence of hybrid modes has been proved analytically
in half-filled waveguides [6, § 3.5]. With less confidence, one can reject the
hypothesis that the propagation constants of normal modes cannot have both
real and imaginary parts. In a series of numerical experiments [7]-[9], it
was shown that the propagation constants of the normal modes of an axially
symmetric waveguide with a dielectric core can leave the real and imaginary
axes of the 8 complex plane. However, to calculate these eigenvalues, we
used the truncation method and standard solvers to find the eigenvalues of
non-self-adjoint matrices. Our experiments in FreeFem+-+ [10] showed that
solvers of this kind can introduce a complex addition to the spectrum of
a self-adjoint problem.

We have recently succeeded in extending the theory of Borgnis functions
to the case of a waveguide filled with optically inhomogeneous matter [11],
[12]. In this case, we have increased the number of potentials to four. Mode
hybridization makes one think that the system of equations for the potentials
does not split in the general case, but we cannot exclude the fact that this
system is written in a self-adjoint form. In this paper, we intend to present
such a self-adjoint formulation of the problem of finding the normal modes of
a waveguide.

2. Representation of the electromagnetic field using
electric and magnetic potentials

Let for simplicity the waveguide cross section S be a planar simply connected
domain with smooth boundary 9.5, and let the permittivity € and permeability
1 be smooth functions of x,y. Denote as Z, T the segments of finite of infinite

length on the axes z and ¢, respectively and assume 0, = 9 in all cases except

ds
ot = %%. The unit external normal vector to the curve 0.5 will be denoted as
n = (n,,n,,0)", and the tangent vector in the zy-plane as 7 = (—n,,n,,0)".

Also for brevity let us assume that

A =(4,,4,07 and V=(9,,0,,07, V' =(-9,,9,,0)"

x Yy (TR )
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and

_ 0 Ou 0 Ou
A u = div(gVu) = 92992 + a0,

As in the theory of Borgnis functions, the scalar function u turning into
zero at the boundary will be referred to as electric potential and the scalar
function satisfying the Newmann condition 0,,v = 0 at the boundary — as
magnetic potential 05 x Z x T. Hereinafter electric and magnetic potentials
are denoted by u and v, respectively, with different indices.

The main result about the four potentials established by us earlier [12]
is that the electromagnetic field allows a representation in terms of four
potentials, namely, two electric potentials u,, u; and two magnetic ones

Vg, U

- 1 - 1
E, =Vo,u, + Zv/atve, H, =Vo,v, — ;V’@tuh. (2)

Therefore, below we seek the solution of Maxwell’s equations in a waveguide
in the form (2) without any loss of generality.

3. Maxwell’s equations in terms of potentials

Substituting expression (2) into Maxwell’s equations, we get 8 rather
than 6 independent equations. Four of these equations allow expressing the
potentials in terms of the longitudinal field components E, u H,. The relation
is determined by classical boundary-value problems. The electric potentials
can be found as solutions of Dirichlet problems

{Aeue+eEZ:0 in SxZxT, (3)

u, =0 on S x Z xT

and

Aiup,+ebE, =0 inSxZxT,
" (4)

up, =0 on 0S x Z xT.

The magnetic potentials can be found as solutions of Newmann problems

{Alve—}—,uHZO in Sx2ZxT, (5)

0,v, =0 ondS x ZxT

and
{Auvh—l—,uHZ:O inSx2ZxT,

0,v, =0 ond0S x Z xT.
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In this case from Maxwell’s equations it follows that

0, //qudxdy = az//,quda:dy =0. (7)
S S

In problems of monochromatic wave propagation 0, is equivalent to multi-
plication by the number iw, therefore from (7) the solvability of the above
problems with the Neumann conditions follows.

The rest two equations can be written in the form

A, (@2, = Opu, — E.) = 0.0, H),

O(u,, €p)
2 2 e
A, (07vy, — v, — H,) 0.0, dey)

(8)

Substituting here the expressions for the potentials in terms of the field
longitudinal components E, and H,, which are obtained by solving the
problems (3)—(6), we rewrite this system in the form

A 0 g (4w D) gzp_ (€ O)p— (0 Coar, (o
0 B, 0 B, 0 u G 0

where as an unknown we consider F = (E,,H,)T, composed of the field
longitudinal components. Here A, ..., B;, are symmetric positively defined

integral operators acting in L?(.S), and C is a non-symmetric integral operator.
This operator makes impossible the separation of the problem into two
independent problems, due to which the hybridization of modes occurs. We
will call it a hybridization operator.

4. Normal modes of a waveguide
Normal mode (1) corresponds to a solution of the system (9) in the form
Ez — Ez(xjweikﬁzfiwt’ Hz — Hz(xjweikﬁzfiwt‘

Taking the dependence on z,t into account, we can formulate the problem
of finding the normal modes of the waveguide as an eigenvalue problem

] o o ) N
gl V) p_ (4 O Fto cNFp=p(2 9 F (o
0 B, 0 B 0 u G 0

with respect to the spectral parameter S.
Thus the problem of finding normal modes reduces to the analysis of the
spectrum of the polynomial operator pencil

AB% + A B+ A, (11)
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where the coefficients /IO, Al, AQ are self-adjoint operators with respect to
a scalar product in L?(S) x L2(S); the senior coefficient A, is a positively
defined and completely continuous operator; the operator A; is completely

continuous and the operator Ao is bounded and reversible. The pencils of

such form arouse in the linear theory of small damped oscillations and were
studied by M. G. Krein and G. K. Langer [13, §12].

5. Conclusion

By introducing four potentials, we were able to reduce the problem of wave
propagation in a waveguide filled with an inhomogeneous substance to a linear
second-order partial differential equation (9), the coefficients of which are
self-adjoint operators. In this case, the problem of finding normal waves is
reduced to studying the spectrum of the quadratic operator pencil (11). Thus,
the formulation of the eigenvalue problem retains the symmetry characteristic
of scalar eigenvalue problems.

This means, first of all, that with discretization by the truncation method,
we obtain a problem for the eigenvalues of a quadratic self-adjoint matrix
pencil. By means of the known procedure [13 §12] it can be reduced to

the generalized eigenvalue problem Au = 5Bu where A B are self-adjoint
matrices. This opens up possibilities for using spe(nahzed eigenvalue solvers.
The proposed formulation is also convenient for theoretical research, since
the physical meaning of its terms is clear. In particular, the linear element of
the pencil describes the hybridization of modes in a waveguide filled with an
optically inhomogeneous medium. A natural next step will be to study the
perturbation of a hollow waveguide by a weakly inhomogeneous substance.
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HopMmanbHBIE MOJIBI BOJTHOBOIA KAK COOCTBEHHBIE
BEKTOPbI CAMOCOIIPA>KEHHOT'O OIIEpaTOPHOTO ITydYKa

M. O. Maabix

Poccutickut ynusepcumem dpyotcoHvr Hapodos
ya. Murayzo-Maxaas, 0. 6, Mocxea, 117198, Poccus

B crarpe paccMmarpuBaeTcss BOJTHOBOI IIOCTOSHHOIO OTHOCBSI3HOTO CEUEHUS S TIpU
YCJIOBUHU, YTO 3aII0JIHAIONIEe BOJHOBO/L BEIIECTBO XapaKTepU3yeTcd JINIJICKTPUIECKON
¥ MATHUTHON TTPOHUIIAEMOCTSIMU, MEHSIIOIUMUCS TIJIABHO HA CEYEHUH S, HO IMOCTO-
JHHBIMU BJIOJIb OCH BOJIHOBO/A. Ha cTeHkax BOJIHOBOMA B3ATHI yCJAOBUA UICATHLHOMN
npoBojiumMocTu. Ha ocHOBe HAMIEHHOTO paHee IIPEJICTABJIEHUS JIEKTPOMATHUTHO-
IO TOJIS B TAKOM BOJIHOBOJE IIPU MTOMOIIHU YETHIPEX CKAJSIPHBIX (DYHKIIUI — IBYX
JIEKTPUYIECKUX U JIBYyX MAarHUTHBIX [MOTEHIINAJIOB — ypaBHeHus MakcBesia 3ammca-
HbI OTHOCUTEJILHO ITOTEHIINAJIOB U IPOJAOJIbHBIX KOMIIOHEHT 1m0Jist. VI3 9T0i cucTeMbr
YAAETCH UCKJIIOYATD MOTEHIIUAJIbI U 3AIUCATD Mapy UHTErpo-mudOepeHinabHbIX
YPaBHEHUN OTHOCUTEJIBHO OJIHUX ITPOJIOJIbHBIX KOMIIOHEHT, PACIIENJIAIONINXCI Ha JIBA
HECBI3aHHBIX BOJTHOBBIX YPAaBHEHUS B ONTHICCKU OTHOPOIHOM ciy4ae. B onTuuecku
HEOTHOPO/THOM CJIydae ITOT MOJIXO0/T IO3BOJISET CBECTHU 337124y 00 OTHICKAHUN HOPMAJIb-
HBIX MOJ] BOJIHOBOJIA K MCCJIEJOBAHUIO CIIEKTPA KBaIPATUYHOI'O CAMOCOIPAKEHHOT'O
OIEPaTOPHOTO ITyYKa.

KoroueBbie cj1oBa: BOJHOBO/I, HOPMAJIBHBIC MOJIbI, THOPUIN3AINA HOPMAJIbHBIX MO/,
3a/1a4a Ha COOCTBEHHbIE 3HAYEHUS, KBAIPATUIHBIE Iy IKU



