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The paper describes a methodology for determining the optical and physical
properties of anisotropic thin film materials. This approach allows in the future
designing multilayer thin-film coatings with specified properties. An inverse problem
of determining the permittivity tensor and the thickness of a thin film deposited
on a glass substrate is formulated. Preliminary information on the belonging of
a thin-film coating to a certain class can significantly reduce the computing time
and increase the accuracy of determining the permittivity tensor over the entire
investigated range of wavelengths and film thickness at the point of reflection and
transmission measurement
Depending on the goals, it is possible to formulate and, therefore, solve various

inverse problems:
– determination of the permittivity tensor and specification of the thickness of

a thick (up to 1 cm) substrate, often isotropic;
– determination of the permittivity tensor of a thin isotropic or anisotropic film

deposited on a substrate with known optical properties.
The complexity of solving each of the problems is very different and each problem

requires its own specific set of measured input data. The ultimate results of solving the
inverse problem are verified by comparing the calculated transmission and reflection
with those measured for arbitrary angles of incidence and reflection.

Key words and phrases: transmittance, reflectance, refractive indices determina-
tion, thin films, multilayers, optical coatings, optical properties

1. Introduction

The efficiency of production of existing devices for solid-state micro- and
nanoelectronics and successful creation of new ones largely depend on the
level of development of the technology for manufacturing layers of various
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materials with a thickness from several nanometers to tens of micrometers [1].
The design and manufacture of multilayer structures with desired properties
from dielectric and/or metal films requires an accurate knowledge of the
optical parameters of each layer [2], [3].

Methods for evaluating the electrophysical parameters of dielectric and
semiconductor thin-film materials [4] based on regularized methods [5] for
solving inverse problems allow accurate determination of the electrophysical
parameters of thin-film semiconductor materials [6]–[8]. It becomes possible
to create multilayer structures with predetermined properties [9].

The advantage of non-contact methods, which include spectrophotometric
and polarimetric methods, is the possibility to carry out measurements without
destroying the material and without changing its properties. When using
these methods, the interaction of electromagnetic waves in the optical range
with the sample material is considered and the intensities of the transmitted
and reflected waves are measured. The obtained intensities can be then used
to calculate both optical and geometric parameters of the samples [10]–[12].

The advantage of spectrophotometric measurements is the possibility to
determine several parameters using one measuring device and one sample
[13]. To determine the thickness, permittivity, and electrical conductivity of
nanometer films in layered structures, one can use the results of measurements
of the reflection and transmission spectra of the optical radiation interacting
with them, provided that the mathematical model of their interaction is
known [14], [15].

Finding the electrophysical parameters of layered structures from the re-
flection and transmission spectra of electromagnetic waves is associated with
the need to solve inverse ill-posed problems of electrodynamics.

The developed program “Multilayer” serves both for modeling the trans-
mission of light through multilayer thin-film layered media [16]–[18] and for
determining the dielectric (permittivity tensor of anisotropic films) and geo-
metric (film thickness) parameters of various thin-film coatings. The program
was created based on many years of experience of collaboration with organi-
zations engaged in the design of thin-film coatings [11] used in the production
of liquid crystal displays.

2. Formulation of extended inverse problem

Methods described in [19] for description of the transmission of an electro-
magnetic wave through an optical system are also used in solving the inverse
problem for determining the optical characteristics of materials. Let us con-
sider formulation of the inverse problem to determine optical parameters of
thin film coating.

Within the framework of the inverse problem, it is required to determine,
using data on the transmission 𝑇𝑚(𝜆𝑖) and reflection 𝑅𝑚(𝜆𝑖) for various
angles of incidence and various polarizations (𝑚 ∈ [1, … , 𝑛], here 𝑛 is the
number of different spectrophotometric measurements for each wavelength
𝜆𝑖, 𝑖 ∈ [1, … , 𝑝] from desired range [𝜆beg, 𝜆end]), the elements of the permittivity
tensor 𝜀(𝜆) of a homogeneous material in a preset wavelength range [𝜆beg, 𝜆end].



380 DCM&ACS. 2020, 28 (4) 378–397

Mathematically, this problem reduces to minimization of the variance
functional with respect to the unknown parameter 𝜀(𝜆𝑖).

𝐹(𝜀(𝜆)) =

=

𝜆end

∫
𝜆𝑗=𝜆beg

(
𝑛

∑
𝑖=1

(𝑇𝑖(𝜆) − 𝑇𝑖(𝜀𝑗(𝜆), 𝜆))2+
𝑛

∑
𝑖=1

(𝑅𝑖(𝜆) − 𝑅𝑖(𝜀𝑗(𝜆), 𝜆))2) 𝑑𝜆. (1)

As was noted above, an additional unknown parameter can be the layer
thickness 𝑑, which has to be especially thoroughly determined for thin films.
In such cases, the target functional is written as 𝐹(𝜀, 𝑑).
An important feature of the problem under consideration is that the optical

parameters have to be found in a continuous wavelength interval [𝜆beg, 𝜆end],
rather than at separate points in this interval. Typically, the interval of
interest covers the visible spectral range from 400 to 800 nm. The search
for parameters defined over a given spectral range implies the requirement
that the spectral dependences of these parameters would be smooth functions,
which influences the structure of solutions.
Solving the task of minimization [20] of the functional (1) frequently involves

procedures requiring considerable computational time. The time consumption
can be significantly reduced by taking into account certain special features of
the system (isotropic vs. anisotropic materials, thick vs. thin layers), that is,
by selecting a proper model of light propagation [21]–[23]. Problems related
to the classification of materials are considered in the next section.
Note. From mathematical standpoint, the inverse problem of restoring

the parameters of a differential operator belongs to the class of so-called
ill-posed problems [5], which implies that small variations in the initial data
may lead to large changes in the coefficients that have to be calculated. Such
behavior of the solution is called unstable. The problem of reconstruction
of the elements of the permittivity tensor 𝜀(𝜆) is the typical example of an
ill-posed problem. The problem of correctness poses additional requirements
both to the accuracy of initial data and to the stability of solution algorithms.
In order to effectively solve an ill-posed problem, it is also highly desirable to
take into account all the information known a priori about the system. Finally,
it should be noted that poor (uncertain) initial data on the transmission
𝑇𝑚(𝜆𝑖) and reflection 𝑅𝑚(𝜆𝑖) of light in the system (for example, in the case
of a significant level of light scattering) may not allow eliminating all the
difficulties related to incorrect formulation of the problem.

3. Classification of media

In the adopted approach to formulation of the inverse problem, the prop-
erties of materials determined by the permittivity tensor are considered as
most important [7], [24], [25]. For the Berreman matrix method [26], special
features of a material (isotropic vs. anisotropic) are not of principal signif-
icance in solving the direct problem. However, the knowledge about such
features may significantly simplify solution of the inverse problem by reduc-
ing the number of unknown parameters and by making possible the use of
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simplified computational schemes [27]. In connection with this, we present
a classification of the materials of interest [25].
The classification is closely related to the relative values and orientations

of the principal axes of the refractive index ellipsoid (figure 1).

Figure 1. A general orientation of a principal axes of the permittivity ellipsoid. 𝜃 nutation
angle, 𝜓 precession angle, 𝜙 spin angle

Classification with respect to the principal values of the permittivity tensor:

— Biaxial anisotropic material. In this case, all three principal axes of the
refractive index ellipsoid are different, for example, 𝜀𝐴 < 𝜀𝐵 < 𝜀𝐶. Such
materials have two optical axes.

— Uniaxial anisotropic material. Two of the three optical axes are equal
to each other, for example, 𝜀𝐴 = 𝜀𝐵 ≠ 𝜀𝐶. Such materials have a single
optical axis coinciding with 𝐶 axis.

— Isotropic material. In this case, all three principal axes of the refractive
index ellipsoid are equal to each other: 𝜀𝐴 = 𝜀𝐵 = 𝜀𝐶.

In uniaxial materials, directions corresponding to equal principal axes of
the refractive index ellipsoid (or equal values of the refractive indices) are
called ordinary (𝜀𝑂 = 𝜀𝐴 = 𝜀𝐵 or 𝑛𝑜), while the remaining direction is
called extraordinary (𝜀𝑒 = 𝜀𝐶 or 𝑛𝑒). It should be recalled that 𝜀𝜎 = 𝑛2

𝜎,
where 𝜀𝜎, 𝑛𝜎 are complex quantities and 𝑛𝜎 is the refractive index. Such
materials are frequently characterized by the value of birefringence (or double
refraction), which is defined as the difference Δ𝑛 = 𝑛𝑒 − 𝑛𝑜.
For 𝑛𝑒 > 𝑛𝑜 we deal with a positive birefringence, while 𝑛𝑒 < 𝑛𝑜 corresponds

to a negative birefringence. Now we will consider the commonly accepted
classification of uniaxial anisotropic materials with respect to the ratio of
𝜀𝑂 and 𝜀𝑒 and the orientation of a special axis. Here, the main parameter
determining the type of a material is the angle of nutation 𝜃.
Classification of uniaxial materials with respect to orientation of the princi-

pal axes of the refractive index ellipsoid:
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— o-Plate:
This case corresponds to the general arrangement of a uniaxial refractive
index ellipsoid with an angle of nutation within 0 < 𝜃 < 𝜋/2, figure 1.
In cases, when the principal axes of the ellipsoid coincide with the
axes of the laboratory frame, the notation 𝜀𝐴, 𝜀𝐵, 𝜀𝐶 will be changed to
𝜀𝑥, 𝜀𝑦, 𝜀𝑧.

— C-Plate:

(a) C-plate positive (b) C-plate negative

Figure 2. [𝜃 = 0; 𝜓 = 0; 𝜓 (the angle of rotation measured from 𝑂𝑋 axis) has arbitrary

value

— A-Plate:

(a) Positive A-plate (b) Positive A-plate

Figure 3. A-plate (positive): 𝜃 = 𝜋/2; 𝜓 = 0; 𝜑 = 0, A-plate (negative):
𝜃 = 𝜋/2; 𝜓 = 𝜋; 𝜑 = 0

The above classification of uniaxial materials, depending on the orientation
of the principal axes of the refractive index ellipsoid of the samples, allows
the calculations to be limited to a small number of options for choosing
calculation schemes, provided that there is a preliminary information about
the belonging of the material under study to one of the classes.
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4. Classification of inverse problems

In solving the inverse problem, the material should be classified primarily
with respect to two factors: anisotropy and thickness. It should be also taken
into account that thin materials (with a thickness of several microns and
below) cannot be considered without a substrate bearing this layer. In such
cases, calculations of the properties of a thin layer will involve the parameters
(refractive index and thickness) of the substrate.
In accordance with a scheme presented in figure 4, the inverse problems

are classified as follows.

Figure 4. Classification of inverse problems

Problems of determination of refractive indices
Calculation of optical parameters for a thick layer – usually substrate (one-

layer model).

— Calculation of the optical parameters (refractive indices) of an isotropic
substrate.

— Calculation of the effective optical parameters of an anisotropic substrate
for a given direction in the plane.

— Calculation of the optical parameters (permittivity tensor) of an
anisotropic substrate.

Calculation of optical parameters for a thin film on thick substrate (two-layer
model).

— Calculation of the optical parameters of a thin isotropic film on isotropic
substrate with known parameters.

— Calculation of the effective optical parameters of thin anisotropic film on
isotropic substrate with known parameters, for a given direction in the
plane.

— Calculation of the optical parameters (permittivity tensor) of a thin
anisotropic film on isotropic substrate with known parameters.

The problem of calculation of the effective refractive index of an anisotropic
material in a given direction on the plane is solved using the same method as
that used for determining the parameters of an isotropic material. However,
calculations of the effective refractive index in a certain direction, while being
of independent interest, may also perform an auxiliary role. On the one
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hand, the effective refractive indices calculated in two mutually perpendicular
directions (par/per) quite well characterize the given material for the normal
incidence of light.
On the other hand, calculation of the principal axes of the refractive

index ellipsoid for an anisotropic material in the case of small Euler angles
(e.g., for a material with well oriented structure, where deviations of the
principal axes from axes of the laboratory coordinate system are small) can
start with calculation of the components lying in the sample plane. These
par/per components can be used in subsequent calculations as very good
initial approximation for the complete calculation of the permittivity tensor.
It should be borne in mind that the inverse problems of various types

require using different sets of initial data, which will be considered below.
Note. In present version of the program, calculations of the parameters of

a thin layer on substrate can be performed only for an isotropic substrate.

5. Classification of solution structures

Various methods of calculation of the propagation of light [22], [28] described
previously (matrix and classical methods) are based on the relations valid
for a given wavelength. In this context, calculation of the spectrum of the
refractive index can be performed either point wise (in a given wavelength
interval) or using a certain preset parametric dependence (figure 5).
Both point wise and parametric methods of calculation have their own

advantages and drawbacks.
Pointwise method
Advantages. Provides effective solution of the inverse problem in the case

of calculations of the optical parameters of a single thick layer. The solution
is sufficiently stable. The level of oscillations in the obtained solution (noise)
corresponds to the noise level in the initial data. Requires relatively small
computational time.
Drawbacks. Gives highly unstable solutions in the case of calculations of the

optical parameters of a thin layer in a two-layer structure (strongly ill-posed
problem). Satisfactory solution can be obtained using various additional
(physically justified) restrictions and regularization parameters.
Parametric structure of solutions
Advantages. Provides smooth solutions consistent with the physical meaning

of the problem. The method is sufficiently universal, especially when the
Kramers-Kronig relations are used [29].
Drawbacks. Computational time increases as compared to that required

for the point wise calculations. Sometimes it is difficult to select a proper
parametric structure of the solution for materials transparent in the entire
range [𝜆beg, 𝜆end].
It should be noted that the requirement of smoothness is especially impor-

tant for the real part of the complex permittivity, that is, for the refractive
index (𝑛). The spectral dependence of the absorption coefficient (𝑘) is usually
smooth even for a pointwise solution.
The main, effective method of solution of the inverse problem consists in

obtaining a parametric solution using the Kramers–Kronig relations [29]. In
this method, an important step is related to simulation of the absorption peaks.
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Figure 5. Inverse problems and alternative solution structures. Red field color indicates

the most widely used structures

The software “Multilayer” allows the absorption peaks to be approximately
described using both Gauss and Lorentz curves. The experience gained in
practical calculations shows that the Gauss approximation has to be preferred.
Questions pertaining to the Kramers–Kronig relations are considered in more
detail in the next Section.

6. Kramers–Kronig relations for permittivity function

Assuming that the permittivity function (𝜀 = 𝜀′ + 𝑖 𝜀′′
) is analytic, we

can write the well-known Kramers-Kronig relations between the real (𝜀′) and

imaginary (𝜀′′
) parts [7]:

𝜀′(𝜔) − 1 = 1
𝜋𝑃

+∞
∫

−∞

𝜀″(𝑥)
𝑥−𝜔 𝑑𝑥,

𝜀″(𝜔) = − 1
𝜋𝑃

+∞
∫

−∞

𝜀′(𝑥)−1
𝑥−𝜔 𝑑𝑥,

(2)
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where 𝜔 is the circular frequency and 𝑃 is a symbol indicating the principal
value of the integral.

For our purposes, the most important relation is (2) which, by virtue of

the odd character of 𝜀′′(𝜔) [7], is equivalent to the following expression:

𝜀′(𝜔) − 1 = 2
𝜋

𝑃
+∞

∫
0

𝑥𝜀″(𝑥)
𝑥2 − 𝜔2 𝑑𝑥. (3)

Experimental measurements can provide sufficiently reliable data on the ab-
sorption coefficient 𝑘(𝜔) (within a certain limited spectral interval [𝜔𝑏𝑒𝑔, 𝜔𝑒𝑛𝑑]),
which is related to the complex permittivity and the refractive index 𝑛(𝜔) by
the following expressions:

𝜀 = (𝑛(𝜔) + 𝑖𝑘(𝜔))2 ≡ 𝑛(𝜔)2 − 𝑘(𝜔)2 + 2𝑖𝑛(𝜔)𝑘(𝜔),

or
𝜀′(𝜔) = 𝑛(𝜔)2 − 𝑘(𝜔)2, 𝜀″(𝜔) = 2𝑛(𝜔)𝑘(𝜔), (4)

where the absorption coefficient 𝑘 is a dimensionless quantity.
Using equations (4) and (3), one can readily obtain an expression relating

the refractive index at a given frequency to the spectrum of the absorption
coefficient:

𝑛(𝜔)2 − 𝑘(𝜔)2 − 1 = 2𝑐
𝜋

𝑃
+∞

∫
0

𝑥𝑛(𝑥)𝑘(𝑥)
𝑥2 − 𝜔2 𝑑𝑥. (5)

Thus, the main problem in determining the spectral dependence of the
refractive index proceeding from the measured absorption spectrum reduces
to solving an integral equation (3) with respect to 𝑛(𝜔). In practice, the
absorption spectrum is measured in a certain limited spectral interval [𝜔1, 𝜔2].
In such cases, equation (5) can be rewritten as

𝑛(𝜔)2 − 𝑘(𝜔)2 − 1 = 2𝑐
𝜋

𝑃

𝜔_𝑒𝑛𝑑

∫
𝜔_𝑏𝑒𝑔

𝑥𝑛(𝑥)𝑘(𝑥)
𝑥2 − 𝜔2 𝑑𝑥 + 𝐶, (6)

where an error arising on the passage to a finite integration interval is repre-
sented by a constant 𝐶, which, generally speaking, also has to be calculated
from experimental data.

Let us consider the results of numerical solution of equation (6) for several
model systems, where the absorption coefficients 𝑘 are defined by a certain
set of Gauss functions (Gaussians).

In figure 6 curves drawn in the same type of lines refer to the absorption
coefficients (thin lines) and the corresponding refractive index profiles (thick
lines) representing solutions of the nonlinear integral equation based on the
Kramers–Kronig relations. An interesting example is offered by the pair
of curves drawn by dashed lines, which just corresponds to the case under
consideration with several absorption bands. The absorption is stronger in
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the initial part of the spectral interval and then decreases. The restored
refractive index also exhibits several maxima.

Figure 6. Kramers–Kronig relations. Two solutions (𝑛_1, 𝑘_1) and (𝑛_2, 𝑘_2) of integral
equation (6)

The main approach to solution of the problem of determination of the re-
fractive indices and absorption coefficients using the Kramers-Kronig relations
consists in modeling the absorption coefficient by a sum of base functions de-
scribing the absorption bands of a given material. Since the spectral interval
of measurements [𝜆beg, 𝜆end] contains by no means all absorption bands of the
given material, it is necessary to provide for the possibility of extending the

base functions outside this interval to a wider wavelength range [𝜆𝑘
𝑏𝑒𝑔, 𝜆𝑘

𝑒𝑛𝑑],
where 𝜆𝑘

𝑏𝑒𝑔 < 𝜆beg < 𝜆end < 𝜆𝑘
𝑒𝑛𝑑. It is assumed that the main absorption

bands of the materials under consideration fall within the interval [𝜆beg, 𝜆end]
or go slightly outside.
The base functions are usually expressed on the frequency scale and then

converted to the wavelength scale. For simulations using the developed
software, the base functions can be selected in the following forms.

— Gauss functions: 𝐺(𝜔, 𝑥) = 𝐴 ⋅ exp(− (𝜔−𝜔0)2

Δ ) .
— Lorentz functions: 𝐿(𝜔, 𝑥) = 𝐴

1+( 𝜔−𝜔0
Δ )2 .

As was noted above, Gaussians are more convenient in use, but Lorentz func-
tions require a shorter time for calculations within each cycle of the iterative
process. Use of the Lorentz curves is related to the following disadvantage:

— The shapes of the spectral curves of 𝑛 and 𝑘 are less perfect than those
obtained by using Gauss functions.

— A significant error arises at the right-hand end of the spectral interval
in the course of calculation of the degenerate integral for the refractive
index (𝑛). This error can be eliminated by artificially expanding the
integration domain (approximately by 40-50 nm) outside the right-hand
boundary of the given spectral interval.
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7. Calculation of optical parameters for a thick layer.
One-layer model

Let us consider some particular examples of calculations of the optical
parameters of thick films based on the results of solutions of the corresponding
inverse problems.
We’ll take as a sample Quartz glass (KU-7 grade) [30].
The transmission and reflection spectra of a sample were measured on

a spectrophotometer. The transmission intensity was measured at a zero
incidence angle, while the reflection was measured at an angle of 7∘ (measured
from the normal to the sample surface). The refractive index calculated for
the spectral range from 450 to 750 nm is presented in figure 7. The maximum

deviation from the standard is 7.0 × 10−4 at a wavelength of 633 nm (for the
curve calculated using the Kramers-Kronig algorithm).
The pointwise algorithm provides a strongly oscillating solution, which is

related to insufficient accuracy of the spectral measurements (noisy spectrum)
used as the initial data.

Figure 7. Refractive index of quartz: (Thin) pointwise algorithm; (Thick) Kramers-Kronig

algorithm; (Points) standard (tabulated) values

Display glass
The transmission and reflection spectra of a sample were measured on

a spectrophotometer using the same angles of incidence as those in the
preceding example – see figures 8 and 9.
The refractive index calculated for the spectral range from 400 to 800 nm

using the pointwise algorithm and the Kramers-Kronig algorithm (based on
the Gaussian approximation of the absorption band) is presented in figure 10.
The spectrum of the absorption coefficient is presented in figure 11.
The pointwise algorithm provides a strongly oscillating solution, which is

related to insufficient accuracy of the spectral measurements (noisy spectrum)
used as the initial data. It should be also noted that the accuracy of mea-
surements in the beginning and at the end of the spectral interval is reduced
because the employed polarizers operate more reliably in the middle of this
interval than at the ends.
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Figure 8. Measured transmission spectra of the glass sample

Figure 9. Measured reflection spectra of the glass sample

Figure 10. Refractive index of display glass:

(magenta) pointwise algorithm; (blue) Kramers-Kronig algorithm
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Figure 11. Absorption coefficients of display glass:

(magenta) pointwise algorithm; (blue) Kramers-Kronig algorithm

8. Calculation of optical parameters for thick and thin
layers. Two-layers model

Calculations of the refractive indices of thin-film materials is complicated
by the fact that their transmission and absorption characteristics cannot
be measured directly and independently, since such materials are usually
deposited onto substrates (with a thickness on the order of 1 mm) in the
course of fabrication. For this reason, the problem is usually solved in at least
two steps. First, it is necessary to determine the parameters of a substrate.
Then, the calculated values of the refractive indices and absorption coefficients
are used in solving the inverse problem for determining the characteristics of
a thin coating.
Let us consider examples of the calculation of refractive indices and absorp-

tion coefficients for a tested real thin-film material.
In order to simplify and accelerate the computation procedures, the charac-

teristics are first calculated for a slow direction of a sample. This approach
provides sufficiently fast and more accurate evaluation of the film thickness
as compared to the standard mechanical measurements with the help of
profilometer.
Then, the refractive indices and absorption coefficients are calculated in

the perpendicular – fast – direction, with the initial thickness approximation
obtained in the first step. After that we can take those solutions as initial
ones for solving the problem of index estimation in the third direction – along
the vertical axis 𝑂𝑍 in local coordinate system. The results of calculation are
presented on figures 12 for real parts (refraction indices) and 13 for imaginary
parts (absorption coefficients). Figures show the calculated values of principal
axes of the refractive index ellipsoid as functions of the wavelength.
Optimization with respect to all components of the refractive index ellipsoid,

the Euler angles, and the film thickness at each point of measurements gives
the results of fitting for measured transmitted and reflected light depicted in
figures 14–15.
Figures 14 and 15 illustrate the degree of approximation for all eight

measurements used in the solution of the inverse problem. The measured
and calculated intensities of light transmitted via a thin film deposited onto
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a display glass are compared in figure 14. The intensities of light reflected in
various directions for different angles of incidence are presented in figure 15.

Figure 12. Refractive indices along three axes in local coordinate system

Figure 13. Extinction coefficients along three axes in local coordinate system

It should be noted that the results of fitting with respect to transmission
are better than those for reflection, which is related to the fact that the
measurements of reflection are more influenced by the scattering of light. Nev-
ertheless, the positions of extrema in the calculated and measured reflection
spectra exhibit good coincidence.

9. Сonclusion

The paper describes a practically tested methodology for the sequential de-
termination of the optical and physical properties (permittivity and thickness)
of anisotropic thin-film materials. This approach ensures the determination
of the required parameters with high accuracy, which makes it possible in the
future to design multilayer thin-film coatings with specified properties. Such
coatings can have the properties of absolute mirrors or absolutely black bodies
in a given wavelength range, optical filters with desired characteristics, etc.
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Figure 14. Result of fitting procedure. Calculated (dashed) and measured (solid lines)

transmittances for different angles of incident s- and p-polarized light

Figure 15. Result of fitting procedure. Calculated (dashed) and measured (solid lines)

reflectances for different angles of incident s- and p-polarized light

Depending on the types of the investigated coatings, the user is offered sev-
eral options (models) for carrying out (executing) calculations. The simplest
approach is to solve the inverse problem at each wavelength using the trans-
mission and reflection measured at this wavelength only. In this case, the
problem has an (infinite) set of feasible solutions. The choice of the one that
is suitable in terms of physical meaning is very difficult for algorithmisation
and laborious.
The second approach is to use a priori information on the continuity of

the components of the permittivity tensor depending on the wavelength.
From a practical point of view, the most successful variant seems to be the
approximation of the imaginary part of the tensor by a set of Gaussians (the
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parameters of which are to be determined). The real part of the permittivity
tensor is calculated in accordance with the Kramers-Kronig relation.
The complexity of solving each of the problems is very different and each

requires its own specific set of measured input data. Therefore, the solution
to each problem is implemented as a separate option within the software
package, although the solution methodology remains the same.Examples of
determining the permittivity of two different standard samples, namely, the
KU-7 silica glass and the display glass, from the measured transmission and
reflection in the visible range are considered. The obtained values of the
refractive index coincide with the values declared by the manufacturer with
an accuracy of 4 decimal places.
The efficiency of the method and algorithm for the sequential determina-

tion of the permittivity tensor of a thin film deposited on a glass substrate
is demonstrated. First, the permittivity of the isotropic substrate is deter-
mined and its thickness is refined. At the second stage, after the deposition
of a thin anisotropic film on the substrate, the parameters of which must be
determined, a series of measurements of transmission and reflection from the
two-layer surface is carried out at different angles and in mutually perpen-
dicular directions. The ultimate results of solving the inverse problem are
verified by comparing the calculated transmission and reflection with those
measured for arbitrary angles of incidence and reflection.
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Решение обратной задачи определения оптических
характеристик материалов

К. П. Ловецкий1, А. А. Жуков2, М. В. Паукшто3,

Л. А. Севастьянов1, А. А. Тютюнник1
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В работе изложена методология определения оптических и физических свойств
анизотропных тонкоплёночных материалов. Такой подход позволяет в даль-
нейшем проектировать многослойные тонкоплёночные покрытия с заданными
свойствами. Сформулирована обратная задача определения тензора диэлектри-
ческой проницаемости и толщины тонкой плёнки, нанесённой на стеклянную
подложку, с известными оптическими свойствами и толщиной. Предварительная
информация о принадлежности тонкоплёночного покрытия к определённому
классу позволяет значительно сократить время расчёта и увеличить точность
определения тензора диэлектрической проницаемости на всём исследуемом интер-
вале длин волн и толщины плёнки в точке измерения отражения и пропускания.
В зависимости от поставленных целей возможна постановка и, следовательно,

решение различных обратных задач:
– определение тензора диэлектрической проницаемости и уточнение толщины

толстой (до 1 см) подложки, часто изотропной;
– определение тензора диэлектрической проницаемости тонкой изотропной

или анизотропной плёнки, нанесённой на подложку, с известными оптическими
свойствами.
Сложность решения каждой из задач весьма различна и каждая требует своего

определённого набора измеренных входных данных. Окончательные результаты
решения обратной задачи верифицируются с помощью сравнения вычисленных
коэффициентов пропускания и отражения с измеренными для произвольных
углов падения и отражения.

Ключевые слова: определение коэффициентов пропускания, отражения, по-
казателей преломления, тонкие плёнки, многослойные материалы, оптические
покрытия, оптические свойства




