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The history of using machine learning algorithms to analyze statistical models
is quite long. The development of computer technology has given these algorithms
a new breath. Nowadays deep learning is mainstream and most popular area in
machine learning. However, the authors believe that many researchers are trying to
use deep learning methods beyond their applicability. This happens because of the
widespread availability of software systems that implement deep learning algorithms,
and the apparent simplicity of research. All this motivate the authors to compare
deep learning algorithms and classical machine learning algorithms.
The Large Hadron Collider experiment is chosen for this task, because the authors

are familiar with this scientific field, and also because the experiment data is open
source. The article compares various machine learning algorithms in relation to
the problem of recognizing the decay reaction 𝜏− → 𝜇− + 𝜇− + 𝜇+ at the Large
Hadron Collider. The authors use open source implementations of machine learning
algorithms. We compare algorithms with each other based on calculated metrics. As
a result of the research, we can conclude that all the considered machine learning
methods are quite comparable with each other (taking into account the selected
metrics), while different methods have different areas of applicability.
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1. Introduction

Machine learning is a branch of mathematical modeling related to the con-
struction of surrogate statistics models. Recent years this area has been
experiencing really intensive growth, related to the development of computer
technology and the ability to analyze grate amount of data (Big Data). Nowa-
days machine learning approaches, in particular deep learning, demonstrate
their high efficiency in data science. Particularly significant results are ob-
tained in classification and cluster analysis of data with unknown structure.
The most popular tendency in machine learning is deep learning. It became
mainstream area in machine learning and other areas were pushed aside.
In this paper, the authors try to study if deep learning is really superior

to all other machine learning methods. Previously, the authors conducted
a comparative analysis of the most popular software products for working with
neural networks networks [1], and also tried to generalize the methodology
for working with machine learning models [2].

1.1. Paper structure

This paper has following structure. In section 2 we describe the problem of
the decay reaction recognition 𝜏− → 𝜇− + 𝜇− + 𝜇+. A brief introduction to
the physics of the process is given.
The section 3 briefly describes the software we use.
The 4 section briefly describes the classification task, provides the termi-

nology from the field of machine learning, we also consider metrics that are
used to evaluate efficiency of classifiers.
We apply the Python language and the modules described to the problem

in the section 3 . We use metrics to evaluate the effectiveness of various
machine learning methods.

2. The violations of the Standard model

Currently, the main model that describes particle physics is a Standard
model formulated in 1960–1970 [3]. Standard model it has passed many
experimental tests. However, with from a methodological point of view, this
theory is not satisfactory [4]. For example, the Standard model does not
describe a number of phenomena, such as explanation of matter–antimatter
asymmetry. Research in the field of theoretical and experimental physics
that try to expand the standard model and describe phenomena that are not
available to it have a collective name: physics beyond the standard model.

2.1. Preservation of lepton numbers

The Large Hadron Collider (LHC) is the main tool for studying physics be-
yond the Standard model. At the LHCb detector (LHG beauty experiment)
experiments are being performed [5] whose purpose is the detection of phe-
nomena that contradict theoretical settings of standard model. In particular,
one of these phenomena is associated with violation of preserving the lepton
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number (𝐿) and the lepton flavor (𝐿𝑒, 𝐿𝜇, 𝐿𝜏). For leptons, the heuristic di-
vision into three generations, which is necessary for existence asymmetries of
matter and antimatter:

— the first generation consists of an electron and an electron neutrino
(𝑒−, 𝜈𝑒),

— second generation — muon and muon neutrino (𝜇−, 𝜈𝜇),
— third generation — 𝜏-lepton (tau) and tau neutrino (𝜏, 𝜈𝜏).
As we can see from the Table 1, according to the standard model each

lepton has four numbers 𝐿𝑒, 𝐿𝜇, 𝐿𝜏 and 𝐿 and for every reactions between

particles the sum of the numbers on the right side of the reaction equation
must be equal to the sum of the numbers on the left side (Lepton number
conservation).

Table 1

Reactions between particles in the standard model

Particle 𝑒− 𝑒+ 𝜇− 𝜇+ 𝜏− 𝜏+ 𝜈𝑒 ̄𝜈𝑒 𝜈𝜇 ̄𝜈𝜇 𝜈𝜏 ̄𝜈𝜏

𝐿 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

𝐿𝑒 +1 -1 0 0 0 0 +1 -1 0 0 0 0

𝐿𝜇 0 0 +1 -1 0 0 0 0 +1 -1 0 0

𝐿𝜏 0 0 0 0 +1 -1 0 0 0 0 +1 -1

This rule holds, for example, in the following tau decay reaction:

𝜏− → 𝑒− + 𝜈𝜏 + ̄𝜈𝑒, 1𝜏 = 1𝑒 + 1𝜏 − 1𝑒.

However, there is a hypothetical tau decay reaction of the following type:

𝜏− → 𝜇− + 𝜇− + 𝜇+, 1𝜏 ≠ 1𝜇 + 1𝜇 − 1𝜇.

Ultrahigh energies proton collisions are performed at the LHC. On average
the collision generates about 80 various particles, most of which are unstable
and fast disintegrate. Among them, there are tau that can occur in one of
the the next five reactions:

— Prompt 𝐷−
𝑠 → 𝜏,

— Prompt 𝐷− → 𝜏,
— Non-prompt 𝐷−

𝑠 → 𝜏,
— Non-prompt 𝐷− → 𝜏,
— 𝑋𝑏 → 𝜏.
The task is to build a classification model that must be trained to recognize

the decay reaction 𝜏− → 𝜇− + 𝜇− + 𝜇+. For training the classifier one [6]
provides real data from LHC (background events) with the addition of signal
data (signal events). The signal data is a simulation of the reaction 𝜏− →
𝜇−𝜇−𝜇+.
The classifier requires the following two properties.
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— Small discrepancy between real data and simulation. For Estimation of
discrepancy data check_agreement.csv is provided This data relates to
the reaction 𝐷+

𝑠 → 𝜙(→ 𝜇−𝜇+)𝜋+ which is topologically very similar to
the desired response of the decay 𝜏−. Also the value of the Kolmogorov–
Smirnov test coefficient must be less than 0.09.

— Also the classifier should have weak correlation with the mass 𝜏−. Data
in a file is provided to evaluate the correlation check_correlation.csv
and the Kramer–von Mises test (CvM).

3. Software

To apply all the described classification methods, we use Python language
and a number of modules: SciKit Learn [7], Keras [8], XGBoost [9] and
hep_ml [10]. Let’s give a brief description here for each of them.
SciKit Learn [7] is library for data processing, which implements various

methods of classification, regression analysis, clustering, and other algorithms
related to machine learning training that does not use neural networks. The
library is written in Python and uses a number of libraries from the SciPy
stack to accelerate calculations. The current version has the number 0.22.2,
but the project is quite mature.
SciKit Learn implements almost all of classifications algorithms we

described. So the Logistic Regression method is implemented in a sub-
module linear_model, Gaussian Naive Bayes method is in the submodule
naive_bayes, the ensemble submodule implements Random Forest and Gra-
dient Boosting Classifier methods. In the submodule sklearn.metrics there
are functions that calculate various metrics for estimation of quality of the
classifier.
The XGBoost library is considered the best implementation of gradient

boosting. It has API for many languages, including Python. We use it along
with SciKit Learn to apply Gradient Boosting Classifier. Also due to the
specifics of the task we use hep_ml module because it is specially designed
for physics problems.
The Keras [8] library provides a high-level software interface for building

neural networks. It can work on top of TensorFlow, Microsoft Cognitive
Toolkit (CNTK) [11] or Theano [12]. The library is written completely in
Python and distributed under the MIT license. Current version is 2.3.1. The
library is based on the following principles: simplicity usage, modularity, and
extensibility. Our choice of this libraries about is justified in the article [1].
The modularity principle allows one to describe neural layers separately,

optimizers, activators, and so on, and then combine them into one model.
The model is fully described in Python. Created model one can save to disk
for future use and distribution.

4. Classification models

The classification model is based on an array of data, presented in tabular
form. The process of model construction is usually consists of fitting numeric
parameters and is also called model training. The propose of the model is
to predict the value dependent variable. In the case of a binary classifier
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a dependent variable can only take two values: 0 or 1. In in this case, the
dependent variable is most often called binary response or just response. One
can also meet the terms: goal, outcome, label, and 𝑌–variable [13]–[15].
The model parameters are adjusted based on independent parameters

variables that are represented by columns of the table. The following terms
are also used: predictor variable, attribute and 𝑋–variable.
There are two types of predictor variables numeric and factorial (another

term — categorical) predictor variables. Numeric variables are continuous
and can take any values from some interval on the numeric axis, and the
factor variables are discrete, not necessarily numeric, and can take values
from a finite set. A special type of factor variables are indicator variables.
Such variables accept only two values (0 or 1).
Depending on the model, it may be necessary to convert factor variables

to numeric values or numeric to factor. So when applying multiple linear
regression to an array of data with factor variables we need to convert them
to numeric type. For example, we can use logit conversion. On the contrary,
using the naive Bayesian classifier to continuous data, this data must be
converted to factor type.

4.1. Metrics for evaluating classification models

A number of numerical methods are used to evaluate the classifier’s perfor-
mance characteristics (metrics) that allow us to compare different classifiers
with each other and choose the most optimal one for the given tasks [14].
The classifier is evaluated based on control sample (also called test or

verification sample). This sample consists of already classified elements and
allows one to measure the performance of the classifier.
Let’s assume that the size of the control sample is 𝑁 and the binary classifier

detects the response 𝑌 and assigns it 1 or 0. Since this detection is performed
on the basis of a control sample, the event class is already known and we can
check classification results. All possible predictions fit into four case.

1. True-positive (TP) — classification result is 1 and true value is 1;
2. False-negative (FN) — classification result is 0 but true value is 1;
3. False-positive (FP) — classification result is 1 but true value is 0;
4. True-negative (FN) — classification result is 0 and true value is 0.

Let’s describe the main metrics that are used for classifier evaluation and
specify functions from the module sklearn.metrics [7], [16], which are used
to calculate this metrics.
Let the total sample size is 𝑁, and the classifier has defined 𝑇 𝑃 true-positive,

𝐹𝑁 false-negative, 𝐹𝑃 false-positive and 𝑇 𝑁 of true-negative cases. We can
calculate the following table 2 called the confusion matrix.
The classification of metrics is based on this matrix. It shows the number

of correct and incorrect predictions grouped into categories by response type.
Other names of this matrix are error matrix or confusion matrix. To calculate
this matrix we use the confusion_matrix function from SciKit–Learn library.
Accuracy is calculated as the percentage of events that the classifier identified

correctly. Calculated using the formula:

𝐴𝑐𝑐 = 𝑇 𝑃 + 𝑇 𝑁
𝑁

,
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Table 2

The confusion matrix

Prediction

True (1) False (0) Total

Data
True (1) 𝑇 𝑃 𝐹𝑁 𝑇 𝑃 + 𝐹𝑁
False (0) 𝐹𝑃 𝑇 𝑁 𝐹𝑃 + 𝑇 𝑁
Total 𝑇 𝑃 + 𝐹𝑃 𝐹𝑁 + 𝑇 𝑁 𝑁

and using the accuracy_score function.

Recall is the percentage of correctly classified events of type 1. Calculated
using the formula:

𝑅𝑇 𝑃 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

,

and using the recall_score function. Terms are also used are sensitivity or
true-positive rate.

Specificity is percentage of correctly classified events of type 0 (also called
zeros). Calculated using the formula:

𝑅𝐹𝑃 = 𝑇 𝑁
𝑇 𝑁 + 𝐹𝑁

,

and also using the recall_score function (for binary classifier this function
returns both recall and specificity). The term false-positive rate is also used.

Precision is percentage of predicted units that are actually zeros. Calculated
using the formula:

𝑃 𝑐𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

,

and also using the precision_score function.

One can create a classifier that will relate all events to class 1. For such
a classifier, the recall will be equal to 1, and specificity 0. An ideal classifier
should detect events from class 1, without incorrectly identifying events of
class 0, as events of the 1 class. Thus a balance must be maintained between
recall and specificity. To evaluate this balance, one uses a graphical method
called ROC-curve — receiver performance curve.

The ROC curve is a graph of recall versus specificity. For plotting on one
axis is delayed recall, and on the other specificity. The graph of an absolutely
ineffective classifier will be represent a diagonal line. More effective classifiers
will have a graph in the form of an arc. The stronger the arc pressed against
the upper-left corner, the more effective it is classifier. The data required to
build the curve is calculated with the roc_curve function.

For a more accurate estimation of the ROC curve, one uses a metric
indicator AUC — area under the ROC curve. A classifier with a ROC curve
as a diagonal line will have 𝐴𝑈𝐶 = 0.5. The more effective the classifier, the
closer the AUC value is to 1. AUC is calculated by the auc function.
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4.2. Logistic Regression

Logistic regression [17], [18] is an analog of multiple linear regression, with
the exception of binary response. To adapt multiple linear regression for this
case is necessary to do fallowing steps:

— represent the dependent variable as a probability function, with values
from segment [0, 1] (probabilistic outcome);

— apply the cutoff rule — any outcome with probability, greater than the
threshold is classified as 1.

If classical multiple regression models the response as linear function from
predictor variables:

𝑦 = 𝛽0 + 𝛽1𝑥1𝛽2𝑥2 + 𝛽3𝑥3 + … + 𝛽𝑛𝑥𝑛,

then the logistics response function is modeled using the logistics response
function (logit-function or sigmoid):

𝑝 = 1
1 + exp(𝛽0 + 𝛽1𝑥1𝛽2𝑥2 + 𝛽3𝑥3 + … + 𝛽𝑛𝑥𝑛)

.

The range of values of such function is the interval (0, 1), we can interpret its
values as the probability of the response.
To fit parameters, we consider not the function itself, but the log-odds

function:

𝑙 = ln
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑥1𝛽2𝑥2 + 𝛽3𝑥3 + … + 𝛽𝑛𝑥𝑛,

which map the probability 𝑝 from the interval (0, 1) to real numbers set.
Then one uses the maximum likelihood method to select parameters based
on a training sample.
After selecting the parameters it remains to select cut-off threshold. For

example, if one puts it equal to 0.5, then all the response with value 𝑝 < 0.5
will be classified as 0, and with the value 𝑝 >= 0.5 as 1.
In the sklearn library, the function that implements the logistic regres-

sion algorithm is located in the linear_model module and it is called
LogisticRegression.

4.3. Gaussian Naive Bayes

Naive Bayesian classifier [15], [19] is a binary classifier. Assignment to
a particular class is based on the conditional probability 𝑝(𝑦|𝑥1, … , 𝑥𝑛) which
is calculated based on the Bayes theorem:

𝑝(𝑦|𝑥1, … , 𝑥𝑛) = 𝑝(𝑦, 𝑥1, … , 𝑥𝑛)
𝑝(𝑥1, … , 𝑥𝑛)

= 𝑝(𝑥1, … , 𝑥𝑛|𝑦)𝑝(𝑦)
𝑝(𝑥1, … , 𝑥𝑛)

.

Next, we make the «naive» statement that all predictor variables are inde-
pendent and, therefore, the joint probability is 𝑝(𝑦, 𝑥1, … , 𝑥𝑛) and it can be
calculated using the formula:
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𝑝(𝑦, 𝑥1, … , 𝑥𝑛) = 𝑝(𝑦)
𝑛

∏
𝑖=1

𝑝(𝑥𝑖|𝑦).

If predictor variables are assumed to be numeric (i.e. continuous values),
then a second «naive» statement is made about the continuity of the distri-
bution function and about the type of distribution. Most often, the normal
distribution and a Gaussian Naive Bayes classifier are used.

The advantages of a Naive Bayes classifier include simplicity (there are
only few hyperparameter settings) and speed.

In the sklearn library, the function implementing the Gaussian Naive
Bayes classifier algorithm is located in the naive_bayes module and is called
GaussianNB.

4.4. Bagging and Random Forest

Tree models [20] or decision trees is a popular, relatively simple, and yet
effective classification method.

Decision trees define a set of classification rules. The rules correspond to
the sequential split of the data into segments. Each rule can be expressed
as a «if-then» condition imposed on a predictor variable. For each predictor,
split value is defined, which divides records into those where the value of the
predictor variable is greater and those where it is less. A set of such rules
forms a tree whose leaves correspond to one of the two required classes (for
a binary classifier).

Tree models advantages is the simplicity of the results interpretation and
the ability to reproduce the branching rules in natural language. However, one
should avoid overtraining of these models. Overtraining means that branching
rules start to take random noise into account. To prevent overtraining, one
should limit the depth of tree branches.

Trees became particularly popular with the introduction of the ensemble
approach. Its essence is to use a set of decision trees and train them on the
same data with further taking the average or weighted average of their results.

Among the methods of training, a method called bagging or bootstrap
aggregation. The bootstrap process involves repeatedly retrieving a random
set of data from a sample. The number of extracted records is less than the
sample size. The most common is bootstrap with replacement. Replacement
means that the extracted data is returned to the sample after use, mixed, and
used for subsequent retrievals. The begging process consists of training trees
on multiple bootstrap samples with returns.

The random forest machine learning algorithm uses begging and selects
predictor variables in addition to bootstrap. In other words, each new tree is
built on a random subset of variables, rather than on all possible variables.
There is empirical rule that it is most efficient to select only

√
𝑛 predictor

variables from 𝑛 each time.

In the sklearn library, the function that implements the random
forest algorithm is located in the ensemble module and is called
RandomForestClassifier.
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4.5. Gradient Boosting Classifier

Gradient boosting method [21] consists of combining a large number of simple
models to produce one that is more accurate than each individual simple
model itself. A set of simple models is called ensemble, and by boosting we
mean the sequential process of building simple models.
The gradient boosting algorithm is one of the most commonly used machine

learning algorithms. We will give only a brief qualitative description here,
without going into mathematical details [22], [23].
At each step of gradient boosting, the selected loss function is minimized

by gradient descent. The loss function is constructed for the selected base
algorithm. Most often the underlying algorithm is the decision tree algorithm.
When building each subsequent model, the errors of the previous one are
taken into account. This is done by defining the data that does not fit into
the previous simple model and adding the next model that processes this data
correctly. When configuring the algorithm, the maximum number of models
in the ensemble is specified, and when this number of iterations is reached,
the algorithm stops. Each model from the ensemble is assigned a certain
weight and their predictions are generalized.
In the sklearn library, the function that implements the gradient

boosting algorithm is located in the ensemble module and is called
GradientBoostingClassifier.
In addition to the implementation included in scikitlearn, Python also

has the XGBoost [9] library, which is highly optimized and has interfaces for
a large number of programming languages (C/C++, Java, Ruby, Julia, R).
In addition to the implementations from these two libraries, we used the

gradient boosting implementation from the hep_ml [10] library, which contains
machine learning methods used in the field of high-energy physics.

4.6. Neural Network

In the article [1], the authors compared various libraries for building neural
networks [8], [12], [24]–[26]. The result of the speed and the accuracy tests
show that Keras library provides the most optimal solution. Therefore, to
solve the problem of recognizing the decay reaction 𝜏− → 𝜇− + 𝜇− + 𝜇+ we
build neural network using this library.

5. Application of the considered methods

We carry out a comparative analysis of classifiers from section 4 by applying
them to the problem of determining muon decay. The problem is a binary
classification problem and is based on data from the LCH and generated data
for detecting muon decay. Training and test data are presented in csv files.
The data contains the values of 40 analyzed parameters. The target attribute
is the «signal» attribute, which takes the values 0 or 1. For training classifiers,
the data set was divided into training and test samples in the ratio of 8 to
2, the number of records for training classifiers is 54042, and the number of
records for testing is 13511.
We choose MLP (multi-layer perceptron) architecture for the neural network.

The network consists of fully connected layers with Batch Normalization layers
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between them that prevent overtraining. Each of the fully connected layers
contains a different number of neurons. The input layer consists of 28 neurons,
the hidden layers contain 100, 120, 60, and 20 neurons, and the output layer
contains 2, according to the number of classes in the data.
All classifiers were tested on a small discrepancy between real data and

simulation (Kolmogorov–Smirnov test, the test value for the classifier should
be less than 0.09) and a weak correlation with ground test (Cramer–von
Mises (CvM), the test value for the classifier should be less than 0.002) In
the table 3 lists the values of these tests.

Table 3

Results of the Kolmogorov–Smirnov and the Kramer–von Mises tests

Classification Kolmogorov–

Smirnov test

Kramer–von Mises

test

Random Forest 0.03682 0.00092

Logistic Regression 0.03309 0.00103

Gaussian Naive Bayes 0.04722 0.00113

Gradient Boosting

Classifier

0.05162 0.00089

Xgboost 0.06327 0.00089

UGradient Boosting

Classifier

0.05587 0.00102

MLP 0.01139 0.00079

For all classifiers, the main metrics are calculated (table 4) for test data, and
the results of comparing the classifiers are presented as a diagram (Figure 1).

acc roc_auc recall f1 precision
0.0
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0.4

0.6

0.8

 

1 1 1 1 1
2 2

2 2 2
3 3

3 3 3
4 4 4 4 45 5 5 5 56 6 6 6 6
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Random Forest (1)
Logistic Regression (2)

Gaussian Naive Bayes (3)
Gradient Boosting Classifier (4)

XGBoost model (5)
UGradientBoostingClassifier (6)

MLP (7)

Figure 1. The results of the comparative analysis of classifiers
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Table 4

The metric values on the test data

Classification Accuracy ROC-AUC Recall F1 Rrecision

Random Forest 0.857 0.851 0.877 0.885 0.892

Logistic Regres-

sion

0.831 0.815 0.880 0.867 0.854

Gaussian Naive

Bayes

0.784 0.759 0.858 0.832 0.808

Gradient Boost-

ing Classifier

0.862 0.854 0.889 0.889 0.890

xgboost 0.861 0.853 0.890 0.889 0.888

UGradient-

BoostingClassi-

fier

0.863 0.868 0.847 0.885 0.927

MLP 0.750 0.787 0.640 0.762 0.941

6. Discussion

The paper presents a comparative analysis of various machine learning al-
gorithms on the example of the problem of determining the decay reaction
𝜏− → 𝜇− + 𝜇− + 𝜇+ at the LHC. We study following algorithms: Logis-
tic Regression, Gaussian naive Bayes classifier, gradient boosting classifier,
bootstrap aggregating (bagging) and random forest, neural network model
(machine learning algorithm — MLA). For each of the algorithms, we build
a classifier using Python libraries and calculate metrics calculated that can
be used to determine the most effective model.

All classifiers successfully passed tests for a small discrepancy between real
data and simulation (Kolmogorov–Smirnov test) and for a weak correlation
with mass (Kramer–von Mises test), which indicates a good quality of the
constructed classifiers for this problem.

To conduct a comparative analysis of machine learning methods, we calcu-
late the most important metrics for each model: accuracy, ROC–AUC score,
recall, F1-score, precision. In the aggregate of all metrics, the random forest
and the gradient boosting method (and their modifications) have the best
results. Logistic Regression, Gaussian Naive Bayes and a model based on
a fully connected neural network show worse results. However, the neural
network surpass other classifiers by the value of the precision metric. This
means that the neural network can better distinguish classes from each other
than other classifiers.
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7. Conclusion

A comparative analysis of various machine learning algorithms is carried
out on the example of the problem of determining the decay reaction 𝜏− →
𝜇− + 𝜇− + 𝜇+ at the Large Hadron Collider. As the compared algorithms
were chosen: Logistic Regression, Naive Bayesian approach with normal
distribution, the method of gradient boosting (Gradient boosting classifier),
bootstrap aggregation in combination with random forest, a model based
on a neural network (machine learning algorithm—MLA). For each of the
algorithms, using the libraries for the Python language, a classifier was built
and metrics were calculated, based on which the most effective model can be
determined.
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Сравнительный анализ методов машинного обучения
на примере задачи определения мюонного распада

М. Н. Геворкян1, А. В. Демидова1, Д. С. Кулябов1, 2

1Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Лаборатория информационных технологий

Объединённый институт ядерных исследований
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Применение алгоритмов машинного обучения для анализа статистических
моделей имеет достаточно длинную историю. Развитие компьютерной техники
дало этим алгоритмам новое дыхание. Особенно громкую известность получи-
ло такое направление машинного обучения, как глубинное обучение. Однако
авторы полагают, что многие исследователи пытаются использовать методы
глубинного обучения за пределами их применимости. Этому способствуют как
широкая распространённость программных комплексов, реализующих алгорит-
мы глубинного обучения, так и кажущаяся простота исследования. Всё это стало
побудительным мотивом для проведения сравнения алгоритмов глубинного обу-
чения и классических алгоритмов машинного обучения.
В качестве задачи был выбран эксперимент на Большом адронном коллай-

дере, поскольку авторы знакомы с данной научной областью, а также потому,
что данные эксперимента доступны публично. В статье проводится сравнение
различных алгоритмов машинного обучения применительно к задаче распозна-
ния реакции распада 𝜏− → 𝜇− + 𝜇− + 𝜇+ на Большом адронном коллайдере.
Используются готовые свободные реализации алгоритмов машинного обучения.
Алгоритмы сравниваются друг с другом на основе вычисляемых метрик. В ре-
зультате исследования можно сделать вывод, что все рассмотренные методы
машинного обучения вполне сопоставимы друг с другом (с учётом выбранных
метрик), при этом разные методы имеют разные области применимости.

Ключевые слова: мюонный распад, машинное обучение, нейронные сети


