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A method for constructing an ensemble of time series trajectories with a non-
stationary flow of events and a non-stationary empirical distribution of the values
of the observed random variable is described. We consider a special model that is
similar in properties to some real processes, such as changes in the price of a financial
instrument on the exchange. It is assumed that a random process is represented as
an attachment of two processes – stationary and non-stationary. That is, the length
of a series of elements in the sequence of the most likely event (the most likely price
change in the sequence of transactions) forms a non-stationary time series, and the
length of a series of other events is a stationary random process. It is considered that
the flow of events is non-stationary Poisson process. A software package that solves
the problem of modeling an ensemble of trajectories of an observed random variable
is described. Both the values of a random variable and the time of occurrence of the
event are modeled. An example of practical application of the model is given.

Key words and phrases: non-stationary time series, non-stationary flow of events,
modeling of an ensemble trajectories

Introduction

In [1]–[4], a model is presented for predicting the sample distribution
function of a non-stationary time series over a certain horizon determined
by the level of non-stationary series. The non-stationarity level is a special
statistic that is collected from end-to-end samples of a given length, in the
form of a distribution of distances between sample distributions in the C norm.
The result of these works was the creation of a software package that generates
an ensemble of time series trajectories, the distribution of which evolves in
accordance with a kinetic equation that preserves the normalization and meets
the observed properties of the series: preserving the trend or changing it to
the opposite. The time in these works was considered to be the sequence
number of the event, i.e. the observation of a random process was carried out
at constant intervals.
In practice, there are often situations where time intervals themselves are

a random process. This is the specifics of Queuing systems, a special case of
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which is the dynamics of exchange transactions [5]–[7]. The purchase price of
a financial instrument and the time interval between two consecutive acts of
sale are two dimensions that characterize this time series. Similar properties
are found in the series of durations of telephone or Internet connections,
sequences of earthquake magnitudes, polluting emissions in megacities, and
other events, the moments of occurrence of which, as well as their values, are
random.
Stock market forecasting using time series analysis has been considered by

a vast number of research papers. Among the works most related to the topic
we should note [8], which analyses point process models that account for the
market noise, and various applications of theoretical models [9], [10] towards
describing the price movements of financial instruments. Notably, neither of
the existing models considers a possibility of nonparametric simulation for
the ensemble trajectory analysis of two-dimensional time series (a moment of
the transaction – a result of the transaction). The given article proposes an
approach to modelling price fluctuation trajectories changing their statistical
properties with time.
Traditional time series analysis uses assumptions about the stationarity of

the corresponding distribution function (hereinafter referred to as FD). The
corresponding methods are described in textbooks on mathematical statistics
[11] and books on market analysis methods [12]. These methods include:
regression trend selection in the sense of MNC; time series co-integration,
which forms a stationary time series (Box-Jenkins, 1972); autoregressive
models (Dickey-fuller, 1979).
Adaptive time series models are also considered: multiparametric models of

short-term forecasting, in which part of the parameters at each next step in
time changes depending on the mismatch of the forecast and the fact (brown,
Holt, winters, 1990-2000), as well as models of weighted moving averages.
In the case of non-equidistant time series, we consider QMS models with

stationary event flows of various types [13] or, alternatively, systems with
double stochasticity [14]. Other stochastic models are also used (A. N. Shiryaev
[15] et al., see, for example., [16]), in which the properties of stationary random
processes are investigated.
As a result, the results of the analysis of stationary models in practice

depend on the sample length and on the current time point. This imposes
restrictions on the reliability of the results obtained when testing certain
management strategies.
Generating an ensemble of trajectories of a non-equidistant non-stationary

time series is thus a practically important task, the solution of which will
allow modeling various control functions of the observed random process and
optimizing them. This paper presents a software package that implements
a time series model with embedding processes of different levels of stationarity.

1. Method for generating a non-equidistant time series

Generation of a non-equidistant non-stationary time series is based on the
following assumptions about the structure of the event flow [5], [6]:

— there is a certain period of time, called the period, within which the
normalized per unit function of the flow intensity is set;
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— there is a relatively small part (the first 10–15 % of the period) of the
time interval that allows us to estimate the predicted number of events for
the period, so that in fact the time series model is built on the remaining
part of the period after making the appropriate observations for the start
of the process;

— we consider a sequence of events with the same values that are most
likely (for example, a sequence of absolute price increments of consecutive
transactions excluding zero increments), called the “first series”;

— the duration of the first series by the number of events is a non-stationary
random process;

— the sequence of values of other events is considered (”second series”);
— the duration of the second series by the number of events is a stationary
random process;

— the distribution of trend movements over time intervals is a stationary
random process, the actual trend is realized by skewing the probability
of price increments to take positive or negative values.

The assumptions made allow us to build a model of a time series that has
properties close to those observed in practice. In particular, in modeling the
price movement of individual transactions on the exchange the most likely
increase is one point by absolute value. Let’s describe the input data for this
particular problem.
At the first stage of preparing data for modeling the trajectory of a time

series, statistics are collected:

— distribution function 𝐹(𝜃) the expert selected the trend of price move-
ments for the duration of time 𝜃 general movement of the price trajectory
up or down;

— probability 𝑃 ± positive and negative price growth on expert selected
fragments of trend movements, 𝑃 + + 𝑃 − = 1;

— parameter of non-stationary Poisson event flow Λ (𝑡, 𝜏) at a time interval
Δ𝑡(𝜏) = [𝑡 − 𝜏 ; 𝑡] inside the period 𝑇 (in relation to stock exchanges this
is a single trading session);

— distribution function 𝐺𝑥>1(𝑛) series of increments, the absolute value of
which 𝑥 more than one conditional item, depending on the number 𝑛
events;

— joint distribution density 𝑓𝑥=1 (𝑘, 𝑘′; 𝐾, 𝑡) lengths 𝑘 and their increments
𝑘′ for a series of absolute price increments per conditional item on the
sample length 𝐾 events in a moment of time 𝑡.

The statistics collected determine the probability 𝑝𝑘 (𝑡 − 𝜏, 𝑡) number 𝑘
events over time Δ𝑡(𝜏) formula

𝑝𝑘 (𝑡 − 𝜏, 𝑡) = (Λ (𝑡, 𝜏))𝑘

𝑘!
exp (−Λ (𝑡, 𝜏)) , Λ (𝑡, 𝜏) = 𝜏𝜇 (𝑡 − 𝜏, 𝑡) . (1)

The value entered here 𝜇 (𝑡 − 𝜏, 𝑡) called the intensity of the flow in the
interval Δ𝑡(𝜏). This is the average number of events over the specified period.
It is defined by the formula

𝜇 (𝑡 − 𝜏, 𝑡) = 1
𝜏

∞
∑
𝑘=1

𝑘𝑝𝑘 (𝑡 − 𝜏, 𝑡) . (2)
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We believe that events are independent, and the flow is ordinary. We
assume the time of aggregation of events to be equal 𝜏 = 1 minutes.
Then set the expected number 𝑁 events on the time horizon 𝑇 time series

simulation. It is necessary in order to perform the normalization of the
intensity profile Λ (𝑡, 𝜏) that’s the number of events.
At the next stage from the distribution 𝐹(𝜃) the random series of num-

bers 𝜃𝑘 is generated in units of measurement of the time taken in the flow
parameter, and

∑
𝑘

𝜃𝑘 = 𝑇 . (3)

Condition (3) determines the total number 𝑀 macro-movements up and

down and their duration, at each interval 𝜃𝑘 the probability 𝑃 +
𝑘 of price

movements in a single event up is set and thus the probability of 𝑃 −
𝑘 = 1−𝑃 +

𝑘
price movements down is determined.

Random whole numbers 𝑛𝑗 are then generated out of distribution (1), that

give a number of events during the minute 1 at intervals Δ1(𝑗), where 𝑗 is
the current minute number. There is a number of events for this generation
(i.e. deals)

𝑁 =
𝑇

∑
𝑗=1

𝑛𝑗. (4)

Next, a sample of numbers ±1 is generated with total length 𝑁 from
the piecewise-stationary distribution of probabilities 𝑃 ±

𝑘 according to the

random number of macro movements out (3). This sample identifies a price
increment sign in a single event. From the density of the distribution function
𝑓𝑥=1 (𝑘, 𝑘′; 𝐾, 𝑡) by method [3] there are features

𝜑𝑥=1 (𝑘; 𝐾, 𝑡) = ∑
𝑘′

𝑓𝑥=1 (𝑘, 𝑘′; 𝐾, 𝑡) ,

𝑢 (𝑘; 𝐾, 𝑡) 𝜑𝑥=1 (𝑘; 𝐾, 𝑡) = ∑
𝑘′

𝑘′𝑓𝑥=1 (𝑘, 𝑘′; 𝐾, 𝑡) ,
(5)

which are involved in the construction of the Liouville equation to simulate
the evolution of distribution 𝜑𝑥=1 (𝑘; 𝐾, 𝑗) from a time interval Δ1(𝑗) in the
interval Δ1(𝑗 + 1):

𝜑𝑥=1 (𝑘; 𝐾, 𝑗 + 1) = 𝜑𝑥=1 (𝑘; 𝐾, 𝑗) +
+ 𝜑𝑥=1 (𝑘 − 1; 𝐾, 𝑗) 𝑢 (𝑘 − 1; 𝐾, 𝑗) − 𝜑𝑥=1 (𝑘; 𝐾, 𝑗) 𝑢 (𝑘; 𝐾, 𝑗) . (6)

Thus, from formula (6), non-stationary distributions of the lengths of series
of increments per conditional unit are known. Functions 𝑓𝑥=1 (𝑘, 𝑘′; 𝐾, 𝑡) are
calculated in the sliding window, so that their appearance is also affected by
the flow parameters selected in the previous stages of the simulation and the
lengths of up and down trend intervals.

After the functions 𝜑𝑥=1 (𝑘; 𝐾, 𝑗) are calculated, samples of lengths are
constructed from them as from analogs of general aggregates 𝑘1,𝑗, 𝑘2,𝑗, … in

such an amount that their sum is equal to the predicted number of transactions
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from (4):

∑
𝑖

𝑘𝑖,𝑗 = 𝑛𝑗. (7)

The length of a series of increments per conditional unit is interrupted by
a series of increments of large values. Series of the second type, as already
mentioned, have a stationary distribution 𝐺𝑥>1(𝑛) in length. A random set
of integers is generated from this distribution 𝑛1,𝑗, 𝑛2,𝑗, … , equal to the series
lengths of the specified second type. Further, the lengths of the series 𝑘𝑖,𝑗 and
𝑛𝑖,𝑗 alternate until their total length is equal 𝑛𝑗. Then a similar construction

begins in the next time interval Δ1(𝑗 + 1).
The increment signs in all these transactions are determined by a sequence

of random signs ±1, which was generated in the previous stages of the
simulation.
The generation of a time series with a stationary distribution function

is based on the usual algorithm, which is based on the following statement
(see, for example, [3]). Let 𝜉 be a random variable with continuous FD 𝐹(𝑥).
Then a random variable 𝜂 = 𝐹(𝜉) has a uniform distribution on [0;1]. Then
at the first step we generate an arbitrary sequence of numbers {𝑦𝑘}, evenly
distributed on [0; 1], then according to the formula

𝑦𝑘 = 𝐹 (𝑥𝑘) , 𝑥𝑘 = 𝐹 −1 (𝑦𝑘) (8)

the elements of the series {𝑥𝑘} can be calculated. Appeal FD into (8) is
possible because of its strict monotony.
If FD the series is not stationary, we used a model of the evolution of

sample density distribution function (next SDDF), so on a given forecast
horizon 𝜏 by length selection 𝑇 forecast data SDDF 𝑓𝑇(𝑥, 𝑡 + 𝑘), 𝑘 = 1, 2, … , 𝜏
are constructed. After that a stationary evenly distributed on [0; 1] series
of numbers {𝑦𝑘} length 𝜏, equal to the forecast horizon. Selective ones FD
𝐹𝑇(𝑥, 𝑡 + 𝑘), 𝑘 = 1, 2, … , 𝜏 are also being built according to the model SDDF
𝑓𝑇(𝑥, 𝑡 + 𝑘). Let 𝑡0 be an initial point in time at which the forecast begins to
be built. Then, in subsequent moments of time one of the possible trajectories
of a random process for which SDDF changes from 𝑓𝑇(𝑥, 𝑡0) to 𝑓𝑇(𝑥, 𝑡0 + 𝜏),
is modeled using the formula for the reversal of the corresponding time-local
distribution function moving in a sliding window 𝑇:

𝑦𝑘 = 𝐹𝑇 (𝑥𝑘, 𝑡0 + 𝑘) . (9)

Thus, a model of the event trajectory for a single trading session is built.

2. Algorithm for modeling unsteady flow of events

In practice, the flow parameter Λ (𝑡, 𝜏) is built directly on observations.
Let 𝑛𝑗 be a number of events in 𝑗 minute of the day. Then the number

of events in a day is

𝑁 =
1440
∑
𝑗=1

𝑛𝑗, (10)
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and the daily rationed intensity profile is determined by the formula

𝑦𝑗 =
𝑛𝑗

𝑁
. (11)

After that, the average number of events (i.e., the actual flow parameter)
in the interval Δ𝑡(𝜏) can be entered by building a weighted average daily
activity profile for a certain period of time T days’. To do this, enter the
average intensity 𝑤(𝑗) in j minute and average number of ticks 𝑁 for day.
Then the weighted average normalized activity profile is determined:

𝑧(𝑚) = 𝑤(𝑚)
𝑁

. (12)

Thus, let the average number of events per day be defined and equal to
𝑁. Than average number of ticks for interval 𝜏 (minutes) until the time 𝑡
(minutes) is

Λ(𝑤) (𝑡, 𝜏) =
𝜏

∑
𝑚=1

𝑤(𝑡 − 𝑚 + 1) = 𝑁
𝜏

∑
𝑚=1

𝑧(𝑡 − 𝑚 + 1). (13)

Because the profile 𝑧(𝑚) is rationed per unit, it can be considered as
a probability of intensity by minutes in a day. Its distribution function is
there

𝑍(𝑚) =
𝑚

∑
𝑘=1

𝑧(𝑘), (14)

that’s why

Λ(𝑤) (𝑡, 𝜏) = 𝑊 ⋅ (𝑍(𝑡) − 𝑍(𝑡 − 𝜏)) =
𝜏−1
∑
𝑘=0

Λ(𝑤) (𝑡 − 𝑘, 1) . (15)

It defines the event flow model for any moments in time 𝑡 and intervals 𝜏.

3. The structure of the software complex

This section contains information about the software package for modeling
and calculating statistics for non-stationary non-equidistant time series [16].

1. General information.
(a) Program Name – “Module for modeling and calculating statistics

for non-stationary non-equidistant time series” NSTS.
(b) The complex requires.NET 4.0.
(c) The system is designed using programming languages – C#/C++.

2. Functional purpose of the complex.
(a) The complex is designed to build a set of non-stationary time

series that have properties characteristic of a given series or set
of series. The possibility of calculating standard sample statistics
for non-stationary time series with a random distribution of time
intervals between consecutive events is implemented.
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(b) Module NSTS implements following main functions:
— generating a specified number of non-stationary time series
with a non-stationary event flow;

— calculation of sample statistics for a set of time series;
— calculation of sample statistics for functional values defined
along the trajectory of such two-dimensional time series.

(c) There are no functional restrictions on the described operations.
3. Description of the logical structure.

(a) The complex consists of the following main components:
— check the validity of input data;
— calculation of the tick density mask depending on time;
— the calculation of the density distribution of tick increments;
— calculation of the density of the distribution of consecutive
tick durations with the value of the most likely increase;

— statistical functions block;
— block of possible functions of financial mathematics for build-
ing statistics;

— building a stationary series for the most likely absolute incre-
ment;

— construction of non-stationary series based on tick increment
distribution masks;

— combining stationary and non-stationary components.
(b) The operation of the non-equidistant time series generation module

is based on a method based on the decomposition of the considered
time series into stationary and non-stationary components. First,
the distribution function of the studied random variable is con-
structed by its value, and the highest probability is found. Next,
we consider sequences of events of two types: those consisting only
of the values that have the highest probability, and all the oth-
ers. For each of the two types of sequences, distributions of these
sequences by length are constructed, and then the resulting dis-
tributions are tested for stationarity. If one of the components is
stationary with the accepted accuracy, then we believe that the
filtering has been performed and the model is adequate.
The program diagram is shown in Figure 1.

Figure 1. Diagram of the time series generation module
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(c) Calculation of statistics for a non-stationary marked time series
is carried out in 2 stages. On the first one, a matrix of statistics
values is built, where the tick number is located on one line, and the
number of points for calculation is located on the column. In the
next step, assuming that the event flow is ordinary and a number
of event moments are described by the Poisson distribution, the
resulting tick density mask is used to move from this matrix to the
results in terms of moments and time intervals.

4. Input data.
(a) The input data is:

— a time series presented in the format of a set of records with
values of a random variable;

— the time points at which these values were recorded.
(b) The settings block for generating a series bundle includes the

following options:
— target number of rows;
— time interval for generation;
— the density distribution of tick increments;
— the level of trend slope for the target series.

(c) Output data.
(i) Output in the generation module is a set of time series.
(ii) The output in the statistical calculation unit is a series of

calculated values and moments of time in which these values
were obtained.

(iii) Also in the output are distributions of statistics calculated by
the full file as functions from the length of the sample, such
as:
— volatility;
— autocorrelation;
— the Hurst exponent.

4. Example of a computational experiment

The time series of tick increments of the RTS index is considered. A frag-
ment of the original series is shown in Figure 2.
Distribution of absolute price increases during the trading session is given

on Figure 3. One point on the chart corresponds to an increase of 10 points
in the RTS index.
The non-stationary index (see [3]) for this series is shown in Figure 4.

A series is considered stationary if the index is less than or equal to one.
Otherwise, the series is non-stationary at the election of the corresponding
lengths.
From Figure 4 it follows that the distribution function of absolute increments

of a number of distinct ticks of the RTS becomes stationary at the length
of 7 thousand events and then remains stationary. The most noticeable
unsteadiness is manifested at the length of 2 thousand ticks. On the one hand,
it would be convenient to work with a stationary distribution. However, the
sample distribution becomes stationary around the end of the daily trading
session, whereas decisions must be made based on data for shorter periods of
time, when the distribution is significantly non-stationary.
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Figure 2. Fragment of the RTS index series

Figure 3. SDDF number of absolute increments in conditional points

The most likely is an increase in the price of one conditional point in
absolute value, the probability of this event is 0.84. As a result of filtering,
the initial tick series of absolute increments is represented as an alternation
of two rows – increments by 1 point and other increments. Elements of each
of the ranks are integers in the duration of episodes of each type. For series
from the duration of the series, the non-stationary indices are considered
(Figure 5).
From the graphs on Figure 5 it can be seen that the non-stationary index

of the first row is greater than one in samples up to 10 thousand, while the
second row is approximately stationary in almost all samples. This means that
the nonstationarity is inherent in the sequence of increments by 1 absolute
point, because this series is nonstationally interrupted by the second series,
the duration of which is a stationary random process.
Note that a trading day contains an average of 250 thousand ticks, of which

about a quarter (i.e. only 60 thousand) are ticks with non-zero increments.
Then an average of 4 thousand events of the second type occur per day.
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Figure 4. The index of nonstationarity of the absolute increases a number of distinctive tics

of RTS

Figure 5. Index of non-stationary series series I and II types

As can be seen from Figure 4, at such lengths, the first row does not yet
become stationary, but for the analysis of intra-day changes in the distribution
function of the first type, this is no longer relevant, because the day has
ended. Therefore, it is interesting to model the time series of durations of the
first type of series on samples of smaller lengths, for example, on samples of
lengths of 1–2 thousand ticks.
The quasi-stationary distribution over the duration of series of the second

type is shown in Figure 6.
The one unit length of the series of the second type is most likely, the

remaining lengths fit into an exponential relationship with determination
0,995:

𝑃2(𝑛) = 0, 76𝑒−0,85𝑛, 𝑛 ⩾ 2.
The average length of the series of the second type, as well as the standard

deviation, is 1.
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Figure 6. Distribution of series of the second type by duration

The Figure 7 is an example of how the time series generation module works.
The bold line indicates the source row, and the remaining curves are the
results of the program.

Figure 7. Example of working process of the time series generation module

The module allows you to test a trading algorithm on an ensemble of non-
stationary trajectories and more accurately optimize the parameters of this
algorithm compared to testing on a stationary trajectory of a large sample.

Conclusion

The described software package allows you to model a non-stationary
Queuing system when the event flow and the value of a random variable
itself are non-stationary processes. In addition to the exchange series, the
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objects of modeling can be the actual CMO, when the flow of phone calls or
requests to visit the site and download certain information has non-stationary
characteristics. For such systems the built complex allows to optimize the
functional of the control. This functional can be the algorithm of the trading
system on the exchange, blocking certain requests to the site, etc. In addition,
the complex allows you to collect complex nonlinear statistics on an ensemble
of trajectories that can not be obtained in practice for a single implementation
of a non-stationary time series.
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Моделирование нестационарного потока событий
с вложенным стационарным компонентом

Р. В. Плешаков

Институт прикладной математики им. М.В. Келдыша РАН
Миусская пл., д. 4, Москва, 125047, Россия

В статье описан метод построения ансамбля траекторий временных рядов
с нестационарным потоком событий и нестационарным эмпирическим рас-
пределением значений наблюдаемой случайной величины. Мы рассматриваем
специальную модель, которая похожа по свойствам на некоторые реальные
процессы, такие как изменения цены финансового инструмента на бирже. Пред-
полагается, что случайный процесс представлен как совокупность двух процессов
— стационарного и нестационарного. То есть длина ряда элементов в после-
довательности наиболее вероятного события (например, наиболее вероятное
изменение цены в последовательности транзакций) образует нестационарный
временной ряд, а длина ряда других событий является стационарным случайным
процессом. Считается, что поток событий является нестационарным пуассонов-
ским процессом. В работе описан программный комплекс, решающий задачу
моделирования ансамбля траекторий наблюдаемой случайной величины. Мо-
делируются как значения случайной величины, так и время возникновения
события. Приведён пример практического применения модели.

Ключевые слова: нестационарные временные ряды, нестационарный поток
событий, моделирование ансамблевых траекторий


