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We consider moving singular points of systems of ordinary differential equations.
A review of Painlevé’s results on the algebraicity of these points and their relation to
the Marchuk problem of determining the position and order of moving singularities
by means of finite difference method is carried out. We present an implementation
of a numerical method for solving this problem, proposed by N.N. Kalitkin and
E.A. Al’shina (2005) based on the Rosenbrock complex scheme in the Sage computer
algebra system, the package CROS for Sage. The main functions of this package
are described and numerical examples of usage are presented for each of them. To
verify the method, computer experiments are executed (1) with equations possessing
the Painlevé property, for which the orders are expected to be integer; (2) dynamic
Calogero system.

This system, well-known as a nontrivial example of a completely integrable Hamil-
tonian system, in the present context is interesting due to the fact that coordinates
and momenta are algebraic functions of time, and the orders of moving branching
points can be calculated explicitly. Numerical experiments revealed that the ap-
plicability conditions of the method require additional stipulations related to the
elimination of superconvergence points.
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1. Introduction

One of the main problems that arise in numerical analysis of systems
of nonlinear ordinary differential equations is the appearance of moving
singular points. It should be recalled that linear systems do not have such
features and, therefore, the region of existence of the solution is always known
in advance. In nonlinear problems, on the contrary, it is never clear beforehand
whether a solution is defined for all considered values of the independent
variable or not. Euler also noted that when approaching moving singular
points of the solution of the Riccati equation, the approximate solution is
increasingly deflecting from the exact one, and it has only recently been
shown that, despite this, the finite difference method allows searching for the
position and orders of moving singularities. In the present paper we report the
implementation of this method in the computer algebra system [1], preceded
by the necessary theoretical introduction.

2. Moving singularities of the solutions of ordinary
differential equations

If a singular point of the general solution to an ordinary differential equation
or a system of such equations depends on the integration constant, it is called
a moving singular point [2]. The behavior of the solution in the vicinity of
a moving singular point was studied by Painlevé in the very end of the 19-th
century and was presented in his famous ’Stockholm Lectures’ [3].

Theorem 1 (Painlevé, 1897; [2]). A moving singular point of a solution
of an ordinary first-order differential equation

𝐹( ̇𝑥, 𝑥, 𝑡) = 0, 𝐹 ∈ ℚ[𝑣, 𝑥, 𝑡], (1)

is always algebraic, i.e., in the vicinity of the singular point such a solution can
be expanded in Puiseux series

𝑥 = 𝐶(𝑡 − 𝑎)𝑝 + … , 𝑝 ∈ ℚ. (2)

Remark 1. Here it is assumed that the Puiseux series converges absolutely
and uniformly in a certain vicinity of point 𝑡 = 𝑎.

Remark 2. In some papers on numerical solution of ordinary differential
equations such a singularity is referred to as a pole of the order |𝑝| even when
𝑝 ∉ ℤ.

A generalization of this result to the case of a system having the form

𝑑𝑥1
𝑓1

= ⋯ = 𝑑𝑥𝑛
𝑓𝑛

= 𝑑𝑡
𝑓0

(3)

requires some stipulations. Let 𝑓0, … , 𝑓𝑛 be polynomials from ℚ[𝑡, 𝑥1, … 𝑥𝑛].
Generally the hypersurfaces

𝑓0(𝑥1, … , 𝑥𝑛, 𝑡) = 0, … , 𝑓𝑛(𝑥1, … , 𝑥𝑛, 𝑡) = 0 (4)
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have a finite number of crossing points in the projective space ℙ𝑛+1. Fixed
singular points of the system’s solution can be calculated as projections of
these points on the 𝑡-axis.

Definition 1. System (3) is called singular, if the system of algebraic
equations (4) has an infinite number of solutions.

Theorem 2 (Painlevé, 1897; [3]). A moving singular point of a non-
singular system (3) is always algebraic, i.e., in its vicinity the solution can be
expanded in a Puiseux series:

𝑥1 = 𝐶1(𝑡 − 𝑎)𝑝 + … , 𝑝 ∈ ℚ. (5)

Remark 3. All systems, in which 𝑓1, … do not contain 𝑡 explicitly, i.e.,
autonomous systems, are singular in the sense of Definition 1. However,
a similar theorem can be proved for the most important autonomous systems,
e.g., the problem of 𝑛 bodies [4].

3. Evaluation of the order of an algebraic singularity
using the finite difference method

If the solution is unknown, it can be found using the finite difference method.
In this regard, the following problem naturally arises
Problem [G.I. Marchuk, 2003]. For a given Cauchy problem and interval

𝑎 < 𝑥 < 𝑏 determine the position of moving singular points in this interval
and their orders by analyzing one or several approximate solutions of the
Cauchy problem.
Probably, many authors believed that this problem has no solution, since,

as Euler noted, the finite difference method describes the solution the worse,
the closer we get to a singular point. Nevertheless, G. I. Marchuk’s problem
was solved by N.N. Kalitkin and E.A. Al’shina in 2005 [5]. The proposed
method was then approved and developed at Moscow State University [6]–
[11]; the paper by A.A. Belov [6] contains historical information of great
interest never published earlier.
The solution proposed by E.A. Al’shina can be described as follows.

1. There exist such schemes, e.g., the complex Rosenbrock scheme of the
first order (CROS), for which the approximate solution tends to a finite
value, when the exact solution has a pole.

2. At regular points the approximate solution 𝑥(𝑡𝑛, Δ𝑡) can be expanded in
an asymptotic series

𝑥(𝑡𝑛, Δ𝑡) = 𝜑(𝑡𝑛) + 𝑟(𝑡𝑛)Δ𝑡𝑟,

where 𝑥 = 𝜙(𝑡) is the exact solution and 𝑟 is the order of approximation.
3. Therefore, at regular points the ratio

𝑥(𝑥𝑛, Δ𝑡) − 𝑥(𝑡𝑛, Δ𝑡/2)
𝑥(𝑡𝑛, Δ𝑡/2) − 𝑥(𝑡𝑛, Δ𝑡/22)

≃
1 − 1

2𝑟

1
2𝑟 − 1

22𝑟

= 2𝑟.
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A remarkable fact is that after the moving singularity it equals

𝑥(𝑡𝑛, Δ𝑡) − 𝑥(𝑡𝑛, Δ𝑡/2)
𝑥(𝑡𝑛, Δ𝑡/2) − 𝑥(𝑡𝑛, Δ𝑡/22)

= 2𝑝,

where 𝑝 is the order of algebraic singularity.
The complex first-order Rosenbrock scheme for autonomous system of

differential equations
𝑑𝑢
𝑑𝑡

= 𝐹(𝑢) (6)

is written as
⎧{
⎨{⎩

𝑢̂ = 𝑢 + 𝜏Re 𝑘,

(𝐸 − 1 + 𝑖
2

𝜏𝜕𝐹
𝜕𝑢

) 𝑘 = 𝐹(𝑢).
(7)

Not perfectly rigorous, but convincing substantiation of the present ap-
proach for the CROS scheme: let in the vicinity of a singular point the
behavior of the function be described by expression

𝑢(𝑡) ∼ (𝑡0 − 𝑡)−𝛽.

Then the behavior of the derivative has the form

𝑢′(𝑡) ∼ 𝛽(𝑡0 − 𝑡)−𝛽−1 = 𝛽𝑢1+ 1
𝛽 .

Let us denote this “effective” right-hand side as 𝐹(𝑢). In this case

𝐹𝑢 = 𝛽 ⋅ 𝛽 + 1
𝛽

𝑢
1
𝛽 = (𝛽 + 1)𝑢

1
𝛽 .

The Rosenbrock schemes have the form

{
(1 − 𝛼𝜏𝐹𝑢(𝑢)) 𝑘 = 𝐹(𝑢),
𝑢̂ − 𝑢 = 𝜏Re 𝑘,

where 𝜏 is the time step of the grid.
In application to our right-hand side we get

(1 − 𝛼𝜏(𝛽 + 1)𝑢
1
𝛽 ) 𝑘 = 𝛽𝑢1+ 1

𝛽 ⇒ 𝑘 = 𝛽𝑢1+ 1
𝛽

1 − 𝛼𝜏(𝛽 + 1)𝑢
1
𝛽

,

𝑢̂ − 𝑢 = 𝜏Re 𝛽𝑢1+ 1
𝛽

1 − 𝛼𝜏(𝛽 + 1)𝑢
1
𝛽

,

or, for the complex Rosenbrock scheme, which is of interest for us, i.e.,
for 𝛼 = (1 + 𝑖)/2,

𝑘 = 𝛽𝑢1+ 1
𝛽

1 − 1+𝑖
2 𝜏(𝛽 + 1)𝑢

1
𝛽

= 𝛽𝑢1+ 1
𝛽

1
1 − 1

2𝜏(𝛽 + 1)𝑢
1
𝛽 − 𝑖

2𝜏(𝛽 + 1)𝑢
1
𝛽

=
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= 𝛽𝑢1+ 1
𝛽

1 − 1
2𝜏(𝛽 + 1)𝑢

1
𝛽 + 𝑖

2𝜏(𝛽 + 1)𝑢
1
𝛽

(1 − 1
2𝜏(𝛽 + 1)𝑢

1
𝛽 )

2
+ (1

2𝜏(𝛽 + 1)𝑢
1
𝛽 )

2 ,

Re 𝑘 = 𝛽𝑢1+ 1
𝛽

1 − 1
2𝜏(𝛽 + 1)𝑢

1
𝛽

(1 − 1
2𝜏(𝛽 + 1)𝑢

1
𝛽 )

2
+ (1

2𝜏(𝛽 + 1)𝑢
1
𝛽 )

2 .

Thus,

𝑢̂ − 𝑢 = 𝜏𝛽𝑢1+ 1
𝛽

1 − 1
2𝜏(𝛽 + 1)𝑢

1
𝛽

(1 − 1
2𝜏(𝛽 + 1)𝑢

1
𝛽 )

2
+ (1

2𝜏(𝛽 + 1)𝑢
1
𝛽 )

2 ,

from which it follows that the fixed point of the scheme is

𝑢0 = ( 2
𝜏(𝛽 + 1)

)
𝛽

. (8)

Now let us apply the Richardson estimate of the effective accuracy order,
which has the form

𝑝eff = log𝑟
𝑢(𝜏/𝑟) − 𝑢(𝜏)

𝑢(𝜏/𝑟2) − 𝑢(𝜏/𝑟) , (9)

where 𝑟 is the grid densening factor (we used 3 grids with the step 𝜏, 𝜏/𝑟
and 𝜏/𝑟2). From (8) and (9) we get

𝑝eff = log𝑟

( 2𝑟
𝜏(𝛽+1))

𝛽
− ( 2

𝜏(𝛽+1))
𝛽

( 2𝑟2

𝜏(𝛽+1))
𝛽

− ( 2𝑟
𝜏(𝛽+1))

𝛽 = log𝑟
1
𝑟𝛽 = −𝛽,

which demonstrates that the Richardson estimate of the effective accuracy
order using the Rosenbrock complex scheme yields the order of the algebraic
singularity.

4. The package CROS for Sage

The computer algebra system Sage [1] is perfectly suitable for computer
experiments with both symbolic and numerical methods. Therefore, we
decided to implement the above method of determining the singularity order
in this system by means of a small package CROS [12], which allows the
calculation of the position and orders of the moving singular points.

4.1. CROS

Function cros(F,ics) for the Cauchy problem described in terms of its
arguments

𝑢̇ = 𝐹(𝑢), 𝑢∣
𝑡=𝑎

= 𝑢0, (10)
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considered on segment 𝑎 ⩽ 𝑡 ⩽ 𝑏, calculates the values of column 𝑢 at
𝑁𝑆 + 1 points of the grid, covering segment [𝑎, 𝑏] uniformly with the step
Δ𝑡 = (𝑏 − 𝑎)/(𝑁𝑆). The function returns a list of values of column 𝑢,
calculated at points

𝑎 + 𝑏 − 𝑎
𝑁

𝑗, 𝑗 = 0, 1, … 𝑁.

Natural number 𝑆 indicates by how many times the grid formed by division
of the initial segment into 𝑁 parts becomes denser.
Necessary arguments:

— 𝐹 is a list of right-hand sides of the ODE, its element type is symbolic
expression,

— 𝑖𝑐𝑠 is a list of initial data, its element type is equality of the form
variable == value. The value can be any number or expression, arithmetic
manipulations are supported by Sage.

Optional arguments:

— 𝑎 is the initial value of variable 𝑡, by default 𝑎 = 0
— 𝑏 is the finite value of variable 𝑡, by default 𝑏 = 1,
— 𝑁 is the number of grid nodes before densening, by default 𝑁 = 10,
— 𝑆 is the densening index; ultimately the scheme uses the step Δ𝑡 =

(𝑏 − 𝑎)/(𝑁𝑆), by default 𝑆 = 1.
As initial conditions, it is recommended to take the numbers from ℝ, other-

wise the calculations become extremely time-consuming, which is a specific
feature of the CROS scheme.

Example 1. Consider the Cauchy problem

𝑦″ = 𝑦2, 𝑦∣
𝑥=0

= 1, 𝑦′∣
𝑥=0

= 1

on the segment 0 < 𝑥 < 3. Let us rewrite it in the form (10)

⎧{{{
⎨{{{⎩

̇𝑥 = 1,
̇𝑦 = 𝑧
̇𝑧 = 𝑦2,

𝑥 = 0, 𝑦 = 𝑧 = 1, t=0.

When specifying the initial conditions let us use decimal fractions, which
will be perceived by the system as numbers from ℝ.
sage: load('cros.sage')
None
sage: var('x,y,z')
(x, y, z)
sage: cros([1,z,y^2],[x==0, y==1.0, z==1.0], b=3.0)
[[0, 1.00000000000000, 1.00000000000000], [0.300000000000000,
1.33821049499058, 1.37883146513243], [0.600000000000000,
1.81581265489380, 2.05236796585663], [0.900000000000000,
2.53640347402030, 3.28908311525028], [1.20000000000000,
3.68660561742990, 5.67422154586290], [1.50000000000000,
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5.58820279611495, 10.4804480613621], [1.80000000000000,
8.65508112242668, 20.0486307394803], [2.10000000000000,
12.8620917982321, 36.1835389093226], [2.40000000000000,
16.9996351976843, 54.5720610523068], [2.70000000000000,
19.8371868069049, 67.2778475556264], [3.00000000000000,
21.3360253982491, 72.9430480385885]]

For plotting (Figure 1) it is possible to use a standard procedure:

sage: sage: point([ [xx,yy] for [xx,yy,zz] in
cros([1,z,y^2],[x==0, y==1.0, z==1.0], b=3.0)])

Graphics object consisting of 1 graphics primitive

0 0.5 1 1.5 2 2.5 3
x

5

10

15

20

y

Figure 1. Solution of the initial problem from example 1 using the CROS scheme at 𝑁 = 10,
𝑆 = 1 (points) and 𝑆 = 4 (line)

4.2. The order

Let 𝑢 = (𝑥, 𝑦, … ) and let 𝑢′, 𝑢″, 𝑢‴ be three solutions to problem (10)
calculated by the CROS scheme. The first solution is obtained with the
division of the segment by 𝑁 points, the second by 2𝑁, and the third by 22𝑁
points. Then the expression

𝑠𝑗 = log2 ∣
𝑦″

𝑗 − 𝑦′
𝑗

𝑦‴
𝑗 − 𝑦″

𝑗
∣

before a singular point asymptotically in Δ𝑡 equals 2, and after the singular
point it equals the order of the passed singularity. This expression is referred
to as effective order of the scheme at the 𝑗-th node of the grid.
The function eff_order(F,ics) computes the effective order for the solu-

tions of the Cauchy problem

𝑢̇ = 𝐹(𝑢), 𝑢∣
𝑡=𝑎

= 𝑢0,
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using the CROS scheme on the segment 𝑎 ⩽ 𝑡 ⩽ 𝑏. The function returns a list
of points (𝑥′

𝑗, 𝑠𝑗).
Necessary arguments:

— F is a list of right-hand sides of the ODE, its element type is symbolic
expression,

— ics is a list of initial data, its element type is equality of the form variable
== value. The value may be any number or expression, arithmetic
manipulations are supported by Sage.

Optional arguments:

— 𝑎 is the initial value of variable 𝑡, by default 𝑎 = 0,
— 𝑏 is the final value of variable 𝑡, by default 𝑏 = 1,
— 𝑁 is the number of grid nodes, by default 𝑁 = 10 .
As initial conditions it is recommended to take the numbers from ℝ, otherwise
the computations appear to be extremely time-consuming (a specific feature
of the CROS scheme).

Example 2. Let us calculate the effective order for the solution of the
Cauchy problem

𝑦″ = 𝑦2, 𝑦∣
𝑥=0

= 1, 𝑦′∣
𝑥=0

= 1

from example 10 on the segment 0 < 𝑥 < 3.

sage: eff_order([1,z,y^2],[x==0, y==1.0, z==1.0], b=3.0, N=30)
[[0.100000000000000, 2.00989109022581], [0.200000000000000,
2.01268790858706], [0.300000000000000, 2.01483966814792],
[0.400000000000000, 2.01644106174018], [0.500000000000000,
2.01754741718014], [0.600000000000000, 2.01818124385354],
[0.700000000000000, 2.01833386808129], [0.800000000000000,
2.01796281442251], [0.900000000000000, 2.01698449712759],
[1.00000000000000, 2.01526061186748], [1.10000000000000,
2.01257491160427], [1.20000000000000, 2.00859410681839],
[1.30000000000000, 2.00280107081003], [1.40000000000000,
1.99437737792691], [1.50000000000000, 1.98198860002381],
[1.60000000000000, 1.96337299865009], [1.70000000000000,
1.93450889341422], [1.80000000000000, 1.88781839346059],
[1.90000000000000, 1.80800548867119], [2.00000000000000,
1.66166416882944], [2.10000000000000, 1.36965695426710],
[2.20000000000000, 0.734022444594345], [2.30000000000000,
-0.678328975943153], [2.40000000000000, -2.12961258492029],
[2.50000000000000, -2.03173073133296], [2.60000000000000,
-1.98022752373820], [2.70000000000000, -1.99096481400289],
[2.80000000000000, -1.99866158256879], [2.90000000000000,
-2.00066044407114]]

It is well seen that the singularity is somewhere near 𝑥 = 2.2 and has an
order of −2, see also Figure 2.
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Figure 2. Effective order of the solution to the initial problem from example 1 using the

CROS scheme

5. Testing the package

5.1. Examples with integer orders

An ODE is said to possess Painlevé property if the order 𝑝 of all moving
singularities is a negative integer [2]. We know all ODEs of the second order
possessing this property, and this provides us with appropriate material for
testing the developed package.

Example 3.

{
𝑦″ = 6𝑦2 + 𝑡,
𝑦(0) = 𝑦(1) = 1.

(11)

Applying the CROS package we see that 𝑦 has a pole of the second order.
This result agrees well with V.V. Golubev’s theorem (1912) [2, p. 199].

Example 4.

{
𝑦″ = 2𝑦3 + 𝑡𝑦 + 1,
𝑦(0) = 𝑦(1) = 1.

(12)

We see that 𝑦 has a pole of the first order. This contradicts V.V. Golubev’s
theorem (1912) [2, p. 200]. However, at present a number of solutions of the
second Painlevé equation are known in rational functions, which have poles of
the first order [13], [14, §32.8]. Therefore, the statement of the above theorem
should be considered erroneous.

Example 5.

⎧{
⎨{⎩

𝑦″ = (𝑦′)2

𝑦
+ 𝑒𝑡(𝑧2 + 1) + 𝑒2𝑡 (𝑦3 + 1

𝑦
) ,

𝑦(0) = 𝑦(1) = 1.
(13)

We see that 𝑦 has a pole of the first order.
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5.2. Calogero system

Among mechanical systems, the Calogero system [15] is the most suitable
for testing. Let us consider 𝑁 material points of unit mass on a straight line,
attracting or repulsing each other with the force inversely proportional to the
cube of the distance. Let 𝑞𝑛 be the position of the 𝑛-th point, then

̈𝑞𝑛 = − 𝜕𝑈
𝜕𝑞𝑛

, (14)

where

𝑈 = ∑
𝑖<𝑗

𝑉 (𝑞𝑖 − 𝑞𝑗), 𝑉 (𝑥) = 𝑏
|𝑥|2

.

This system is Hamiltonian with

𝐻 = 1
2

∑ 𝑝2
𝑛 + 𝑈(𝑞)

and, what is most essential for the subsequent analysis, it can be written in
the form

𝑑𝐿̂
𝑑𝑡

= [ ̂𝐴, 𝐿̂], (15)

where

𝐿̂(𝑝, 𝑞) = diag(𝑝1, 𝑝2, … , 𝑝𝑁) + 𝑖 (
1 − 𝛿𝑗𝑘

𝑞𝑗 − 𝑞𝑘
)

and

̂𝐴(𝑝, 𝑞) = 𝑖 diag(𝑑1, 𝑑2, … , 𝑑𝑁) − 𝑖 (
1 − 𝛿𝑗𝑘

(𝑞𝑗 − 𝑞𝑘)2 ) , 𝑑𝑘 = ∑
𝑗

1 − 𝛿𝑗𝑘

(𝑞𝑗 − 𝑞𝑘)2 .

This representation was guessed and can be checked by direct substitution.

Equation (15) means that the eigenvalues of matrix 𝐿̂(𝑝(𝑡), 𝑞(𝑡)) are inde-
pendent of 𝑡. Indeed, let us introduce the matrix ̂𝑈(𝑡) as a solution to the
Cauchy problem

𝑑 ̂𝑈
𝑑𝑡

= ̂𝐴 ̂𝑈, ̂𝑈(0) = 𝐸.

A conjugate matrix satisfies the equation

𝑑 ̂𝑈 ∗

𝑑𝑡
= − ̂𝑈 ∗ ̂𝐴

and, therefore,

𝑑 ̂𝑈 ̂𝑈 ∗

𝑑𝑡
= ̂𝐴 ̂𝑈 ̂𝑈 ∗ − ̂𝑈 ̂𝑈 ∗ ̂𝐴 = −[ ̂𝐴, ( ̂𝑈 ̂𝑈 ∗)], ̂𝑈 ̂𝑈∗(0) = 𝐸.
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The only solution to this Cauchy problem is ̂𝑈 ̂𝑈 ∗ = 𝐸, therefore, ̂𝑈 is
a unitary matrix. It remains to note that

𝑑 ̂𝑈 ∗𝐿̂ ̂𝑈
𝑑𝑡

= − ̂𝑈 ∗ ̂𝐴𝐿̂ ̂𝑈 + ̂𝑈 ∗[𝐿̂, ̂𝐴] ̂𝑈 + ̂𝑈 ∗𝐿̂ ̂𝐴 ̂𝑈 = 0,

so that
̂𝑈 ∗(𝑡)𝐿̂∣

𝑡
̂𝑈(𝑡) = 𝐿̂∣

0
,

i.e., the eigenvalues of the matrices 𝐿̂ (𝑝(𝑡), 𝑞(𝑡)) and 𝐿̂ (𝑝(0), 𝑞(0)) on any
solution of (14) coincide, which was to be proved.

The proved statement means that the eigenvalues of matrix 𝐿̂(𝑝, 𝑞) are inte-
grals of motion for system (14). It is convenient to use them for constructing
symmetric functions

𝐹𝑘(𝑝, 𝑞) = Sp 𝐿̂(𝑝, 𝑞)𝑘, (𝑘 = 1, … 𝑁),

which will be rational integrals of motion. These integrals are in involution.
It is most simply seen from the fact that the repulsing particles at 𝑡 → +∞
will spread (i.e., |𝑞𝑗 − 𝑞𝑘| → ∞). Therefore

𝐹𝑘 = ∑ 𝑝𝑘
𝑗 + …

and (𝐹𝑘, 𝐹𝑟) tends to zero on any trajectory. On the other hand, the Poisson
bracket is an integral of motion. Therefore, this expression must be identically
zero, i.e., (𝐹𝑘, 𝐹𝑟) = 0. Hence, the Calogero system is completely integrable
and has 𝑁 rational integrals of motion.

The description of solution used above can be derived as follows: for the
matrix

𝑄̂(𝑞) = diag(𝑞1, … 𝑞𝑁)
it is valid that

𝑑
𝑑𝑡

̂𝑈 ∗𝑄̂ ̂𝑈 = − ̂𝑈 ∗ ̂𝐴𝑄̂ ̂𝑈 + ̂𝑈 ∗ diag(𝑝1, … ) ̂𝑈 + ̂𝑈∗𝑄̂ ̂𝐴 ̂𝑈 =

= ̂𝑈 ∗([ ̂𝐴, 𝑄̂] + diag(𝑝1, … )) ̂𝑈 = ̂𝑈∗𝐿̂ ̂𝑈 = 𝐿̂∣
𝑡=0

,

from where using the Taylor formula we immediately have

̂𝑈 ∗𝑄̂ ̂𝑈 = 𝑄̂∣
𝑡=0

+ 𝑡𝐿̂∣
𝑡=0

.

Therefore, general solution 𝑞1 = 𝑞1(𝑡), … is a set of eigenvalues of the matrix

𝑄̂∣
𝑡=0

+ 𝑡𝐿̂∣
𝑡=0

and is given by algebraic functions of 𝑡 and initial data.

Thus, the Calogero system is an example of a system with rational Hamil-
tonian 𝐻(𝑝, 𝑞), which has 𝑁 rational integrals in involution, and whose general
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solution is provided by algebraic, but not rational functions of 𝑡 and initial
data.
Two bodies attract, the order of singularity 1/2 (Figure 3):

sage: var('t, q1,q2,p1,p2')
(t, q1, q2, p1, p2)
sage: L=cros([1, p1,p2, diff(1/(q1-q2)^2,q1),
diff(1/(q1-q2)^2,q2)],
[t==0, q1==0.0, q2==1.0, p1==0.0, p2==0.0], N=10^2)
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0 0.2 0.4 0.6 0.8 1
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0.5

1
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2

r

Figure 3. Collision in the two-body problem

Three bodies attract, the order of singularity at the collision points 1/2
(Figure 4):

sage: var('t, q1,q2, q3, p1, p2, p3')
(t, q1, q2, q3, p1, p2, p3)
sage: V=(1/(q1-q2)^2 + 1/(q1-q3)^2 + 1/(q2-q3)^2)
sage: L=cros([1, p1,p2,p3, diff(V,q1),diff(V,q2),diff(V,q3)],
[t==0, q1==0.0, q2==1.0, q3==3.0, p1==0.0, p2==0.0, p3==0],
b=1, N=10^2)
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Figure 4. Collision in a three-body problem

5.3. Points of superconvergence

Experimentally, it was found that in some cases the use of the proposed
technique leads to false operation. Thus, e.g. the Cauchy problem

⎧{
⎨{⎩

𝑦″ = 𝑦 − 𝑦3

6
,

𝑦∣
𝑥=0

= 𝑦′∣
𝑥=0

= 0

on the segment 0 < 𝑥 < 1 using the CROS method is solved facing no
singularities. For sure, in Figure 5 we compare solutions found using the
CROS and rk4 schemes. However, the plot of effective orders (Figure 6)
demonstrates strange peculiarities.
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Figure 5. Solutions found using the CROS scheme (line) and rk4 (dots)
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Figure 6. Effective order

The efforts of reducing the step and minimizing the rounding error did not
lead to any changes, which suggests that this artifact is not a defect of the
program. We explain it as follows. In theory the formula

𝑦𝑛 − 𝜙(𝑥𝑛) = 𝑔𝑛Δ𝑥2 + 𝑂(Δ𝑥3)

is used assuming without any justification that 𝑔𝑛 ≠ 0. In the present case
we deal with a single node, in which 𝑔𝑛 = 0. This fact is well seen in Figure 7.
Thus, the diagram of effective order indicates not only moving singular points,
but also “removable” singular points, at which a superconvergence of the
scheme takes place.
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Figure 7. Plot of difference between two approximate solutions calculated on grids with the

step Δ𝑥 = 0.01 and 0.005

Remark 4. Note that the point 𝑥 = 0 is always such a point of supercon-
vergence, due to which at the beginning of the plot strange fluctuations are
always observed.

The revealed effect means that a rigorous substantiation of the method for
determining the order of singularities requires elimination of a certain number
of special cases, including superconvergence.

6. Conclusion

Numerical experiments convincingly verify the numerical method for deter-
mining the position and order of moving singular points of ordinary differential
equations, based on the Rosenbrock difference scheme. Moreover, this method
allows easy correction of errors in the order of singular points determined
in the course of theoretical studies of equations that possess the Painlevé
property. On the other hand, we revealed a phenomenon of false opera-
tion of the algorithm of moving singular point recognition at the points of
superconvergence.
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Численное определение порядка особенности системы
дифференциальных уравнений

Али Баддур1, М. Д. Малых1, А. А. Панин2, Л. А. Севастьянов1

1Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Кафедра математики физического факультета

Московский государственный университет им. М.В. Ломоносова
Ленинские горы, Москва, 119991, Россия

В статье рассматриваются подвижные особые точки систем обыкновенных
дифференциальных уравнений. Дан обзор результатов Пенлеве об алгебраично-
сти этих точек и их связи с задачей Г.И. Марчука об определении положения
и порядка подвижных особых точек по методу конечных разностей. Представлена
реализация численного метода решения этой задачи, предложенная Н.Н. Ка-
литкиным и Е.А. Альшиной (2005) на основе комплексной схемы Розенброка,
в системе компьютерной алгебры Sage — пакет CROS for Sage. Описаны ос-
новные функции этого пакета, приведены численные примеры использования
каждой из них. В целях верификации метода проведены компьютерные экспе-
рименты: (1) с уравнениями, обладающими свойством Пенлеве, для которых
порядки должны получаться целыми числами; (2) с динамической системой
Калоджеро.
Эта система, хорошо известная как нетривиальный пример вполне интегрируе-

мой гамильтоновой системы, в данном контексте интересна тем, что координаты
и импульсы являются алгебраическими функциями времени, причём поряд-
ки подвижных точек ветвления можно вычислить явно. В рамках численных
экспериментов обнаружено, что условия применимости метода требуют допол-
нительных оговорок, связанных с исключением точек суперсходимости.

Ключевые слова: CROS, метод конечных разностей, Sage, система Калоджеро,
свойство Пенлеве


