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Forest fires lead to the serious damage of ecological state and national economy
of the country. This problem is especially relevant for Siberians. According to
Greenpeace, Siberian forest fires in 2019 reached record levels in the entire history of
observation in terms of burning area and the amount of carbon dioxide emitted into
the atmosphere. It leads not only to a deterioration in the health of Siberians, but
also to environmental problems of the region. Note that the large-scale fire-prevention
measures entails enormous financial costs. Therefore, economical, ecological and
mathematical modeling of the situations, arose in forest fires countering, becomes
actual.
The paper is devoted to optimal control problem of forest fires fighting. Its

prototype is the well-known Parks model. To investigate the model, we apply the
modern programming language Julia, which is designed to mathematical calculations
and numerical studies. We made an extensive computational experiment in this
model and a numerical analysis of corresponding optimal control problems. The
obtained results were examined both on the adequacy of the model, and on the
possibility of using the Julia language and the included solvers of mathematical
problems.

Key words and phrases: forest fires fighting, mathematical modeling, optimal
control, numerical analysis, Julia programming language

1. Introduction

The Irkutsk Region is one of the largest constituent entities of the Russian
Federation. Its area is about 774.846 square km., it is slightly less than
the area of the Republic of Turkey (780.580 sq. km.), and also exceeds the
territory of France, Germany and many other European countries. Most
of the territory of the Irkutsk region, namely 71.5 million hectares, or 92%
of its territory, is occupied by the forest. About 12% of timber reserves of
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ripe forests of the country are concentrated here, and the share of especially
valuable coniferous species is significant even on the scale of the planet.
According to the press service of the Ministry of Emergency Situations of

Russia, on July 28, the 143 forest fires with a total area of 597,298 hectares are
active in the Irkutsk Region. Totally, in Siberia and the Far East, forest fires
are burning in the area comparable to Belgium. Of course, such an essential
loss of natural resources leads to negative environmental, economic and social
consequences [1–3]. For instance, in the work [2] it was established that
during intensive burning of the taiga, the concentration of carbon monoxide
increases by almost 30 times in comparison with the background content
in the air, methane by 2 times, carbon dioxide in 8%. Such exceedences
lead to the health deterioration of the inhabitants of the Irkutsk region [3].
In addition, due to the annual, large-scale forest fires blazing near Lake
Baikal, chemical components, such as ammonium, expedite the reproduction
of various microorganisms that destroy the aquatic ecosystem of the Baikal
region.
The most important problem in forest fires fighting, besides the protecting

of people’s lives, is a quick and effective fire suppression, planned to minimize
the total damage. Controlling of the process of suppression, transportation
of forces to the place of fire is made by employees of forest protection or-
ganizations. In the most cases they make decisions based on their personal
experience. But even with experience, defining an optimal fire fighting plan
is, often, a quite difficult task. For many years, scientists have been study-
ing models that allow them to find optimal solutions of fire fighting forces
control under an active forest fire. These attempts are being made to take
into account the characteristics of the spread of fire, the capabilities of the
available fire-fighting forces and equipment, topographic features and other
factors. Here we mention works [4–16]. Note that the papers [4, 5] continues
the research originated in [7, 8].
The analysis of some foreign works on the subject [9–11] shows that more

investigations use modern programming languages, such as Python, R, Java,
and so on. These software products are applied to analyze and visualize the
data. Actually, it improves the quality of the research. However, despite
a sufficient number of software tools, in explorations of Russian scientists
such products are not so widely used as abroad. In this paper, we apply
rather new universal programming language Julia [17]. Its development was
begun by scientists in 2009, and its first version was published in 2012. The
research uses the latest version of Julia, presented in 2018. Julia is a modern
high-level programming language with dynamic typing for mathematical
calculations, which is used to develop research software, approbation and test
of new problem-solving methods. The essential advantages of this language
are simple syntax and speed of program execution. It is often chosen by
astronomers, robotics and financiers. In the computational experiment, the
IPOPT (Interior Point OPTimizer) package is used. This package is meant
to numerical solving of optimization problems of a large dimension.

2. Problem statement

The paper focuses on the optimization model for the dispatching and
withdrawal of fire-fighting forces to the place of a forest fire [6, 8]. After
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certain transformations, it can be written as the following optimal control
problem (𝑃 ):

𝐽 = ∫
𝑡𝑐

𝑡𝑎

(2𝐶𝑆𝑢2(𝑡) − 𝛼(𝑡)𝑥(𝑡) + 𝛽(𝑡))𝑑𝑡 + 2𝐶𝑆𝑥(𝑡𝑐) → min,

̇𝑥 = 𝑢1 − 𝑢2,
𝑥(𝑡𝑎) = 𝑥𝑎,

−𝑚 ⩽ 𝑢1(𝑡) − 𝑢2(𝑡) ⩽ 𝑀, 𝑢1(𝑡) ⩾ 0, 𝑢2(𝑡) ⩾ 0,
0 ⩽ 𝑥(𝑡) ⩽ 𝑋,

𝑔(𝑡𝑐, 𝑥(𝑡𝑐)) = 𝑥(𝑡𝑐) − 𝑟(𝑡𝑐)
𝐸(𝑡𝑐 − 𝑡𝑎)

= 0,

where 𝛼(𝑡) = 𝐶𝐵𝐸(𝑡 − 𝑡𝑎) − 𝐶𝑋 and 𝛽(𝑡) = 𝐶𝑇 + 𝐶𝐵𝑟(𝑡).
The state variable 𝑥(𝑡) denotes the size of the fire fighting force at the

moment 𝑡. The pair of control variables 𝑢1(𝑡) and 𝑢2(𝑡) represent dispatching
and withdrawal rates of the reinforcements at the time 𝑡, respectively. The
trajectory 𝑥(⋅) is supposed to be a piecewise smooth function, while the
control functions 𝑢1(⋅), 𝑢2(⋅) are piecewise continuous.
Let us give an economical interpretation of model’s parameters:

— 𝑡𝑎 and 𝑡𝑐 are the time moment of initial attack and the final time moment,
when the fire is brought under control, respectively; 𝑡𝑐, in general, is
supposed to be non-fixed;

— 𝑟(𝑡) is a function of the fire spread rate in the absence of fire fighting
forces;

— 𝐶𝑆 is the cost to transportation (i.e., dispatching or withdrawal) of fire
fighting forces (currency unit per force unit);

— 𝐶𝑇 is the parameter characterizing the loss of the forest during uncon-
trolled burning per time unit (currency unit per time);

— 𝐶𝐵 is the cost per unit area of forest damaged by fire (currency unit per
area unit);

— 𝐶𝑋 is the cost of the fire-fighting (currency unit per unit of forces – time);
— 𝑚 is the maximal rate of fire-fighters withdrawal (force unit per time);
— 𝑀 is the maximal rate of fire-fighters dispatching (force unit per time);
— 𝐸 is the ratio of the effectiveness of fire fighting in this area (unit of

forces per time);
— 𝑥𝑎 is the initial attack force (force unit);
— 𝑋 is the maximal limit of fire fighting forces (force unit).

We point out some features of problem (𝑃 ). This linear optimal control
problem contains

a) the terminal state constraint in the form of equality, and
b) the pointwise state constraint.

These features significantly complicate the analytical investigation of prob-
lem (𝑃 ), even under the linearity of the dynamical system [8]. In the mentioned
work, the problem was analyzed using the Pontryagin Maximum Principle [18].
As a result, the author of [8] gave an explicit formula for the optimal control,
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which depends on values of two unspecified parameters: the final time 𝑡𝑐 and
the scalar Lagrange multiplier 𝜆 which corresponds to the terminal state con-
straint. For a further specification of the optimal control, it was proposed
to use a grid search of proper values of the unknown parameters. Then, the
optimality conditions should be checked for each choice of 𝑡𝑐 and 𝜆.
Our paper is devoted to the numerical investigation of problem (𝑃 ). We

use the so-called “direct approach”, i.e., an approach to the study of optimal
control problems, when the total discretization of the dynamic optimization
problem is applied. Further, the obtained problem is solved by methods and
tools of mathematical programming. This approach is often criticized by
experts in the field of optimal control, but it often turns out to be effective in
solving practical optimization problems.
At the discretization stage of problem (𝑃 ), we apply the explicit Euler

scheme, firstly reducing problem (𝑃 ) to the Mayer form. We introduce an
unessential state variable 𝑦, which derivative coincides with the integrand of
the cost functional 𝐽 (the initial condition for 𝑦 is trivial). The problem may
be rewritten as follows (problem (𝑃1)):

𝐽 = 𝑦(𝑡𝑐) + 2𝐶𝑆𝑥(𝑡𝑐) → min,

̇𝑥 = 𝑢1 − 𝑢2,
̇𝑦 = 2𝐶𝑆𝑢2 − 𝛼(𝑡)𝑥 + 𝛽(𝑡),
𝑥(𝑡𝑎) = 𝑥𝑎, 𝑦(𝑡𝑎) = 0,

−𝑚 ⩽ 𝑢1(𝑡) − 𝑢2(𝑡) ⩽ 𝑀, 𝑢1(𝑡) ⩾ 0, 𝑢2(𝑡) ⩾ 0,
0 ⩽ 𝑥(𝑡) ⩽ 𝑋,

𝑔(𝑡𝑐, 𝑥(𝑡𝑐)) = 𝑥(𝑡𝑐) − 𝑟(𝑡𝑐)
𝐸(𝑡𝑐 − 𝑡𝑎)

= 0,

𝛼(𝑡) = 𝐶𝐵𝐸(𝑡 − 𝑡𝑎) − 𝐶𝑋, 𝛽(𝑡) = 𝐶𝑇 + 𝐶𝐵𝑟(𝑡).
Note that problems (𝑃 ) and (𝑃1) are equivalent to each other. Meanwhile,

problem (𝑃1) contains the terminal and pointwise state conditions as well.

3. Numerical analysis

Let us consider a discrete analogue of problem (𝑃1) using the direct Euler
scheme. Here we suppose that the final time moment 𝑡𝑐 is given. Introduce the
𝑁-point grid of the time interval [𝑡𝑎, 𝑡𝑐]: 𝑡𝑎 = 𝑡0 < 𝑡1 < … < 𝑡𝑁−1 < 𝑡𝑁 = 𝑡𝑐.

As usual, the time lag is calculated as ℎ = 𝑡𝑁 − 𝑡0
𝑁

. Discrete problem (𝑃𝑑)
takes the following form:

𝐽 = 𝑦(𝑡𝑁) + 2𝐶𝑆𝑥(𝑡𝑁) → min;

𝑥(𝑡𝑘+1) = 𝑥(𝑡𝑘) + ℎ[𝑢1(𝑡𝑘) − 𝑢2(𝑡𝑘)],

𝑦(𝑡𝑘+1) = 𝑦(𝑡𝑘) + ℎ[2𝐶𝑆𝑢2(𝑡𝑘) − 𝛼(𝑡𝑘)𝑥(𝑡𝑘) + 𝛽(𝑡𝑘)],
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𝑥(𝑡0) = 𝑥𝑎, 𝑦(𝑡0) = 0,
−𝑚 ⩽ 𝑢1(𝑡𝑘) − 𝑢2(𝑡𝑘) ⩽ 𝑀, 𝑢1(𝑡𝑘) ⩾ 0, 𝑢2(𝑡𝑘) ⩾ 0,

𝑘 = 0, 1, … , 𝑁 − 1;
0 ⩽ 𝑥(𝑡𝑘) ⩽ 𝑋, 𝑘 = 0, 1, … , 𝑁;

𝑔(𝑡𝑁, 𝑥(𝑡𝑁)) = 𝑥(𝑡𝑁) − 𝑟(𝑡𝑁)
𝐸(𝑡𝑁 − 𝑡0)

= 0,

where
𝛼(𝑡) = 𝐶𝐵𝐸(𝑡 − 𝑡0) − 𝐶𝑋, 𝛽(𝑡) = 𝐶𝑇 + 𝐶𝐵𝑟(𝑡).

Here, we use the previous notations for state and control variables and
parameters of the problem. Furthermore, note that we have the sequences
{𝑢1, 𝑢2}, {𝑥, 𝑦} thought as control and state, respectively:

𝑢1 = {𝑢1(𝑡)}, 𝑢2 = {𝑢2(𝑡)}, 𝑡 = 𝑡0, 𝑡1, … , 𝑡𝑁−1,

𝑥 = {𝑥(𝑡)}, 𝑦 = {𝑦(𝑡)}, 𝑡 = 𝑡0, 𝑡1, … , 𝑡𝑁.
Notice that (𝑃𝑑) is a linear programming problem. It contains 4𝑁 variables

and 8𝑁 + 1 conditions.
We have tested more than 30 variants of the parameters of problem (𝑃𝑑).

Some of them were unsuccessful. Such outcomes we associate with the absence
of admissible plans of the problem. We think that the choice of values of the
final time moment 𝑡𝑐 was improper in certain trials.
Let us show the results of certain numerical experiments. Here, we present

some interesting examples. Each of them is accompanied by a table indicating
the values of the parameters. Illustrations are arranged as follows: on the
upper graph, the trajectory component 𝑥(𝑡) is depicted, and on the lower
graphs we show controls 𝑢1(𝑡) and 𝑢2(𝑡), from left to right, respectively.

3.1. The first group of examples: the rate of fire spread is constant

Example 1. The parameters of problem (𝑃𝑑) are presented in Table 1.

Table 1

Parameters for Example 1

Parameter 𝑡0 𝑡𝑁 𝑁 𝐶𝑠 𝛼 𝛽 𝑚 𝑀 𝐸 𝑟 𝑥0 𝑋
Value 0 22 1000 10 1 5 30 30 1 50 2 1000

Let us give an interpretation of the found solution (see Figure 1). The
corresponding value of the cost functional 𝐽 ≈ 75.
The initial attack force at the moment 𝑡𝑎 is characterized by 𝑥0 = 2.

The high rate of fire spread (𝑟 ≡ 50) compels us to use the maximum
speed dispatching of new fire fighting forces. Then, the value of forces
takes a turnpike state 𝑥 ≈ 32, and we keep it up to the time of withdrawal.
The initial and final time intervals are characterized by maximum values of
dispatching (𝑢1) and withdrawal (𝑢2) speeds.
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Figure 1. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 1

Note that the state constraints on 𝑥(𝑡) are inactive in this example (the
contrary case is shown by the Example 3).

Example 2. We decrease some parameters: the rate of fire spread 𝑟, the
maximal rate of fire-fighters withdrawal 𝑚, the final time 𝑡𝑐. The updated
data is shown in Table 2.

Table 2

Parameters for Example 2

Parameter 𝑡0 𝑡𝑁 𝑁 𝐶𝑠 𝛼 𝛽 𝑚 𝑀 𝐸 𝑟 𝑥0 𝑋
Value 0 10 1000 5 1 5 1 30 1 5 2 100

The solution is presented on Figure 2. It refers to the high speed of
withdrawal fire forces at the final period. The most effective attack needs
only forces in the place (at the initial time). In this case the optimal value of
the cost functional is 𝐽 ≈ 51.

Figure 2. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 2

Note that control 𝑢1 is rather close to zero, and we look at its graph as
computational error.
Although the value of fire-fighting forces in the place is decreased to

𝑋 = 100, the pointwise state constraints remain inactive.
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Table 3

Parameters for Example 3

Parameter 𝑡0 𝑡𝑁 𝑁 𝐶𝑠 𝛼 𝛽 𝑚 𝑀 𝐸 𝑟 𝑥0 𝑋
Value 0 100 1000 10 10 1 30 30 1 5 2 1000

Example 3. We essentially increase the time interval and change values
of 𝛼 and 𝛽, and some other parameters (see Table 3).
Figure 3 shows that the pointwise state constraint becomes active. The

trajectory graph means increasing of the initial value of forces 𝑥0 = 2 to the
maximal level 𝑋 = 1000. Herewith, both controls 𝑢1 and 𝑢2 take maximum
values on the initial and final time intervals, respectively.

Figure 3. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 3

3.2. The second group of examples: the variable rate of fire spread

Here, we suppose that the rate of fire spread increases by the following law:

𝑟(𝑡) = {
1, 𝑡 ∈ [1, 6],
15, 𝑡 ∈ (6, 12].

Also, we fix a number of time-grid points 𝑁 = 300.
Note that problem (𝑃 ) was investigated in [5], where some features (ad-

vantages and shortcomings) of the model were indicated. Particularly, the
author said that the optimal solution is characterized by three stages of con-
trol. The first of them corresponds to the maximum speed of fire fighting
forces dispatching. On the second stage all involved forces fight with the fire.
And then, fire fighters are withdrew with the maximal rate. The previous
examples correspond to this consequence.
However, even linear problems of dynamic optimization admit “singular”

intervals of control, where the last one can take intermediate values. In
particular, the considered model is able to contain such intervals. This feature
is illustrated by the following examples.

Example 4. The data of the problem is presented in Table 4.
Consider Figure 4.
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Table 4

Parameters for Example 4

Parameter 𝑡0 𝑡𝑁 𝐶𝑠 𝐶𝑡 𝐶𝑏 𝐶𝑥 𝑚 𝑀 𝐸 𝑥0 𝑋
Value 0 12 1 0 0 0 3 3 1 0 10

Figure 4. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 4

One can see that control 𝑢1 takes intermediate values of admissible set
[0; 3]. Note that the “jump” of control 𝑢2 is inessential, and its values are
close to zero, in fact.
The found solution admits the following conclusions.
On the first stage, when a fire spreading rate 𝑟 = 1, the most effective

fire extinguishing strategy was achieved at the time point 𝑡 = 6. The fire
was localized. However, a significant increase in the rate of fire spread (up
to the level 𝑟 = 15) required the use of additional forces (such a situation,
for example, is due to the weather deterioration). The short time of the
pause in dispatching of fire-fighters is associated with an excess of the cost of
transporting fire forces in comparison with the damage of the action of fire.
In this example, the pointwise state constraint was again inactive.

Example 5. Minor changes of parameters 𝐸 and 𝑥0 entail certain changes
in the controls (see Table 5 and Figure 5). Note, there are also time intervals
with intermediate values of the controls.

Table 5

Parameters for Example 5

Parameter 𝑡0 𝑡𝑁 𝐶𝑠 𝐶𝑡 𝐶𝑏 𝐶𝑥 𝑚 𝑀 𝐸 𝑥0 𝑋
Value 0 12 1 0 0 0 3 3 1,1 1 10

In order to localize the fire, the fire prevention forces increased gradually.
It is noteworthy that the found solution contains two “turnpike” intervals [19].
These intervals are characterized by the constancy of the trajectory on the
plot of the function 𝑥. Each of them corresponds to the fire spread rate levels
𝑟 = 1 and 𝑟 = 15, respectively. The graph of control of 𝑢2 is close to zero (we
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assume, as before, the depicted “blow-ups” are computational errors). At the
same time, the descending control peaks of 𝑢1 are currently not explicable by
the authors and require additional analysis.

Figure 5. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 5

4. Conclusion

Modern mathematical methods and tools are currently very accessible for
applied research. Of course, their use requires certain skills and understanding
of the field of research. The article shows how using the Julia programming
language one can numerically investigate some applied mathematical models
and solve the corresponding optimization problems.
The results of the experiments are very interesting. Examples 1–3 illustrate

rather obvious strategies of forest fire fighting, which applied on practice.
Note that the results of calculations for example 2 correspond to the behavior
of decision makers in the north of the Irkutsk region. Such tactics, of the
non-attraction of additional countervailing forces, is substantiated by the
economic inefficiency of them.
Examples 4, 5 also interesting from an applied point of view, are entertaining

by mathematics view as well. Apparently, their solutions contain the trunk
modes of dynamic systems (in the last example one can see two turnpike
intervals) [19]. The noted finding requires further study with the involvement
of the corresponding mathematical apparatus.
Further research will be associated with a more detailed analytical study of

the obtained results, consideration of nonlinear modifications of the presented
model and more complicated statements of optimization problems.

Acknowledgments

The publication has been prepared with the financial support of the Ministry
of Science and Higher Education of the Russian Federation, project no. 0279-
2019-0003.

References

1. A. P. Sukhodolov, A. A. Izmestiev, Economic accessibility of forest re-
sources as rent-forming factor and assessment basis for forest raw material
potential [Ekonomicheskaya dostupnost’ lesnykh resursov kak rentoo-
brazuyushchiy faktor i osnova otsenki lesosyr’yevogo potentsiala], Bulletin
of Baikal State University (6 (86)) (2012) 32–35, in Russian.



A.P. Sukhodolov, P.G. Sorokina, A. P. Fedotov, Numerical analysis… 163

2. A. V. Panov, A. S. Prokushkin, A. V. Bryukhanov, M. A. Korets, E. I.
Ponomarev, N. V. Sidenko, G. K. Zrazhevskaya, A. V. Timokhina, M. O.
Andreae, A complex approach for the estimation of carbonaceous emissions
from wildfires in Siberia, Russian Meteorology and Hydrology 43 (5) (2018)
295–301.

3. I. V. Tikhonova, N. V. Efimova, Prevalence of the chronic respiratory
tract pathology in teenagers: role of some factors [Chastota khronicheskoy
patologii verkhnikh dykhatel’nykh putey u podrostkov: rol’ nekotorykh
faktorov], Hygiene and Sanitation (6) (2012) 51–53, in Russian.

4. G. Dorrer, I. Buslov, S. Yarovoy, Conception of managing system for
wild fire struggle [Kontseptsiya sistemy upravleniya bor’boy s prirodnymi
pozharami], Siberian Fire and Rescue Bulletin (1 (1)) (2016) 38–44, in
Russian.

5. A. V. Kolyada, Optimization of the process of extinguishing a forest
fire using simulation [Optimizatsiya protsessa tusheniya lesnogo pozhara
s ispol’zovaniyem imitatsionnogo modelirovaniya], Scientific Notes of the
RSSU (8) (2010) 89–94, in Russian.

6. G. M. Parks, Development and application of a model for sup-
pression of forest fires, Management Science 10 (4) (1964) 760–766.
doi:10.1287/mnsc.10.4.760.

7. M. Parlar, R. G. Vicson, Optimal forest fire control: an ex-
tension of Park’s model, Forest Science 28 (2) (1982) 345–355.
doi:10.1093/forestscience/28.2.345.

8. M. Parlar, Optimal forest fire control with limited reinforce-
ments, Optimal Control Applications Methods 4 (1983) 185–191.
doi:10.1002/oca.4660040208.

9. J. Rodriguez-Veiga, M. J. Ginzo-Villamayor, B. Casas-Mendez, An integer
linear programming model to select and temporally allocate resources for
fighting forest fires, Forests 9 (583) (2018) 2–18. doi:10.3390/f9100583.

10. C. Artigues, E. Hébrard, Y. Pencolé, A. Schutt, P. J. Stuckey, A study
of evacuation planning for wildfires, in: The Seventeenth International
Workshop on Constraint Modelling and Reformulation (ModRef 2018),
Lille, France, 2018.
URL https://hal.archives-ouvertes.fr/hal-01814083

11. J. Rodriguez-Veiga, I. Gomez-Costa, M. J. Ginzo-Villamayor, B. Casas-
Mendez, J. L. Saiz-Diaz, Assignment problems in wildfire suppression:
models for optimization of aerial resource logistics, Forest Science 64 (5)
(2018) 504–514. doi:10.1093/forsci/fxy012.

12. E. V. Bogdanova, G. V. Davydova, Methodical approaches for forecasting
forest fire in the Irkutsk region [Metodicheskiye podkhody k prog-
nozirovaniyu lesnykh pozharov v Irkutskoy oblasti], in: S. V. Chuprova,
N. N. Danilenko (Eds.), Revitalization of the Intellectual and Resource
Potential of the Regions: New Challenges for the Management of Compa-
nies Materials of the 3rd All-Russian Conference, Irkutsk, 18 May 2017,
BGU, Irkutsk, 2017, pp. 45–51, in Russian.
URL http://vseup.ru/static/files/IRKUTSK_-_2017.pdf

13. E. A. Pyanova, A. A. Faleychik, L. M. Faleychik, Forest fires in
Transbaikalia: numerical simulation [Lesnyye pozhary v Zabaykal’ye:



164 DCM&ACS. 2019, 27 (2) 154–164

chislennoye modelirovaniye], in: Kulagin readings: technology and tech-
nology of production processes XV International Scientific and Practical
Conference: a collection of articles in 3 parts. Part 2, 2015, pp. 125–129,
in Russian.

14. O. A. Belykh, G. D. Rusetskaya, Instruments effectiveness assessment
to implement sustainable management principles of forest systems in
Eastern Siberia [Otsenka effektivnosti instrumentov realizatsii printsipov
ustoychivogo upravleniya lesnymi sistemami v vostochnoy Sibiri], Forestry
Bulletin 23 (1) (2019) 5–13, in Russian.

15. J. B. Ditsevich, O. A. Belykh, G. D. Rusetskaya, Counteracting crimes
in the sphere of forest resources’ use: problems and perspectives
[Protivodeystviye prestupnosti v sfere lesopol’zovaniya: problemy i per-
spektivy], Russian Journal of Criminology 11 (2) (2017) 308–317, in
Russian. doi:10.17150/2500-4255.2017.11(2).308-317.

16. I. Y. Kulagina, Problems of reforestation in Russia [Problemy
vosstanovleniya lesov v Rossii], in: The economic development of so-
ciety in modern crisis conditions. Collection of articles of the International
Scientific and Practical Conference. In 3 parts. Samara, May 13, 2017,
2017, pp. 128–131 [in Russian].

17. M. Sherrington, Learn the language of Julia, Packt Publishing, 2016.
18. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrilidze, E. F. Mishenko,

Mathematical theory of optimal processes [Matematicheskaya teoriya
optimal’nykh protsessov], Fizmatlit, Moscow, 1961, in Russian.

19. V. I. Gurman, Turnpike solutions in the procedures seeking opti-
mal controls, Automation and Remote Control 64 (3) (2003) 399–408.
doi:10.1023/A:1023209524049.

For citation:

A.P. Sukhodolov, P.G. Sorokina, A.P. Fedotov, Numerical analysis of
ecology–economic model for forest fire fighting in Baikal region, Dis-
crete and Continuous Models and Applied Computational Science
27 (2) (2019) 154–164. DOI: 10.22363/2658-4670-2019-27-2-154-164.

Information about the authors:

Alexander P. Sukhodolov — Doctor of Sciences (Economics), Professor,
First Vice Rector – Vice Rector for Science of Baikal State University; Head
of laboratory, Limnological Institute SB RAS (e-mail: 3952_2015@mail.ru,
phone: +7(3952)522633, ORCID: https://orcid.org/0000-0002-2005-4247,
ResearcherID: C-2594-2017, Scopus Author ID: 57188180400)

Polina G. Sorokina — Senior Lecturer of Department of Mathemat-
ics and Computer Science of Baikal State University; Junior scientist,
Limnological Institute SB RAS (e-mail: ermolaeva_polina@mail.ru,
phone: +7(914)9005216, ORCID: https://orcid.org/0000-0003-2993-7887,
Scopus Author ID: 23972206400)

Andrey P. Fedotov — Doctor of Sciences (Geology and Mineralogy),
Director of Limnological Institute SB RAS (e-mail: info@lin.irk.ru,
phone: +7(3952)426504, ORCID: https://orcid.org/0000-0003-3020-9895,
ResearcherID: D-3689-2018, Scopus Author ID: 56240982700)


