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The design of kinematic supports is considered, which allows to damp the oscillation
energy of seismic waves during earthquakes. The building rests on supports that have
the geometry of straight cylinders. When horizontal ground oscillations occur, the
supports are deflected at a small angle 𝜓. At the same time, their centre of gravity
rises and tends to return to its original position under the action of two forces on
each support: the weight of the building evenly distributed over all the supports,
and the weight of the support itself. The first force is applied to the highest point of
the support, the second one is applied to the centre of gravity of the support, so that
the rotational moments of two forces act on the support.
It should be noted that under very strong vibrations of the ground, the projection

of the centre of gravity could move beyond the base of the support. In this case, the
supports will begin to tip over. We confine ourselves to considering such deviations
that the rotational moments of the forces of gravity still tend to return the supports
to their initial state of equilibrium.

Key words and phrases: ensuring seismic stability of buildings during earthquakes,
the equation of motion of a physical pendulum, vibration damping.

1. Introduction

The amount of energy transferred to the building depends on the relation
between the spectra of seismic effects and natural oscillations of the building.
The closer the peaks of the spectra, the greater the energy transferred to the
building under similar conditions. This energy is mainly absorbed by the
inelastic deformations of the structure. Based on the above facts, two main
tasks can be formulated aimed at ensuring the seismic resistance of a building:

— to separate the spectra and thereby reduce the amount of energy trans-
mitted to the building and
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— to provide the absorption of the remaining energy using special measures.

In the publications on deterministic analysis of the dynamics of construc-
tions, describing the time-dependent motion of the system under the action
of seismic load (strongly oscillating and irregular) [1–8], various types of the
building supports are studied, aimed at efficient damping the energy of the
spatial movement of the building caused by an earthquake. Among them
the most successful solutions have been proposed by A. M. Kurzanov and
Yu. P. Cherepinsky [6]. In this paper, we consider in detail the design and
operation of Kurzanov’s kinematic supports, which have been well-proven in
experimental studies [1, 7, 8]. Our theoretical study of the functioning of kine-
matic supports is aimed at their mathematical modelling and the subsequent
selection of parameters of the model of supports in order to solve both of the
above problems of seismic stability of buildings. Note that in recent years the
interest in the study of kinematic supports that provide the seismic resistance
of buildings has noticeably increased [9–11]. See also [12–19].

2. Mathematical model of the functioning
of kinematic supports

The design of kinematic supports is considered, which allows damping the
oscillation energy of seismic waves during earthquakes. The building having
the weight 𝑀𝑔 rests on 𝑛 supports, each having the weight 𝑚𝑔. The supports
have the geometry of straight cylinders of height ℎ and base diameter 𝑎.
Under the action of an incident seismic wave, the whole construction

“building + 𝑛 supports” comes into a complex movement. Of all the seismic
waves, let us consider horizontal waves. When horizontal ground oscillations
occur, the supports are deflected by an angle 𝜓. At the same time, their
centre of gravity rises and due to this fact the building, moving horizontally,
rises and acquires additional potential energy. After that, the building tends
to return to its original position and acquires additional kinetic energy, with
the result that each of the supports acquires additional kinetic energy under
the action of two forces on each support: the weight of the building evenly
distributed on each support, and the weight of the support itself. The first
force is applied to the highest point of the support (see Figure 1), the second
one is applied to the centre of gravity of the support (see Figure 2), so that
the rotational moments of two forces act on the support. Below we consider
only a part of the system, namely, a support isolated from the seismic impact.
Each support has the shape of a cylinder with the height ℎ and diameter

𝑎 = 2𝑟. It should be noted that under very strong vibrations of the ground,
the projection of the centre of gravity can move horizontally beyond the base
of the support, i.e., 𝜑 > 𝛼, where 𝛼 is the angle between the diagonal of the
support and its height, so that 𝛼 = arctan (𝑎

ℎ). In this case, the supports

will begin to tip over. We confine ourselves to considering such deviations,
when the rotational moments of the forces of gravity still tend to return the
supports to the initial state of equilibrium, that is, we will consider the case
𝜑 < 𝛼. Then 𝛼 = 𝜑 + 𝜓, where 𝜓 is the angle of deviation of the flat base
of the support from the horizontal, while the supports perform non-linear
oscillations. To compose the equation of motion of a support, we take into
account that it is a physical pendulum.
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Figure 1. Rotational force generated

by the pressure of the building on

the supports

Figure 2. Rotational force generated

by the weight of the support

Before the appearance of seismic effects, the “building + 𝑛 supports” system
is in a state of stable equilibrium, i.e., the supports stand on the ground, the
building rests on the supports, with the centre of gravity in the lowest position
and the lowest potential energy. After the deviation of the “building + 𝑛
supports” system from the equilibrium position of the supports (along with
the building), they rise and fall, rotating around one of their edges during
the first half-period of the oscillatory motion. Then the supports touch their
bases to the ground with a blow, followed by the loss of a part 𝜀 of the energy
due to the inelastic impact of the ground. After that, due to the remaining
(1 − 𝜀) kinetic energy of the support (along with the building), they rise
and fall, rotating around its other edge during the second half-period of the
oscillatory motion. Then the next blow occurs and the oscillatory motion
continues with damping.
During each of the half-periods, the movement occurs under the action of

gravity forces and their rotational moments.
The returning force of a uniformly distributed building weight acting on

a support is 𝐹𝑀 = −𝑀𝑔
𝑛 sin𝜑. The distance from the point of application of

the force 𝐹𝑀 to the axis of rotation is equal to 𝐿𝑀 = 2𝑙 =
√

𝑎2 + ℎ2. The

torque of the force is expressed as 𝐹𝑀 • 𝐿𝑀 = −𝑀𝑔
𝑛

√
𝑎2 + ℎ2 sin𝜑.

The returning force generated by the weight of the support itself is calculated
as 𝐹𝑚 = 𝑚𝑔 sin𝜑. The distance from the point of application of the force
𝐹𝑀 to the axis of rotation is 𝑙. The torque of the force is calculated using the
formula 𝐹𝑚 ∗ 𝑙.
The moment of inertia of the support is equal to 𝐽 = 𝑚

2 𝑟2 + 𝑚
6 ℎ2. The

equation of motion of a support, assuming that it is a physical pendulum,
has the form

𝐹𝑚 + 𝐹𝑀 = −𝐽�̈�. (1)
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Taking into account the explicit form of the restoring forces, we obtain the
relation

𝑚𝑔𝑙 sin𝜑 + 2𝑀𝑔
𝑛

𝑙 sin𝜑 = −12𝑙2 + ℎ2

24
�̈�, (2)

which is reduced to the Lagrange differential equation describing the dynamics
of the motion of the supports after a seismic shock, bringing the entire system
out of equilibrium:

−�̈� = − (𝑛𝑚 + 2𝑀
12𝑙2 + ℎ2 ) 24𝑔𝑙

𝑛
sin𝜑. (3)

In the case of limited oscillations, i.e., when 𝜓 < 𝛼, we get

̈𝜓 − (𝑛𝑚 + 2𝑀
12𝑙2 + ℎ2 ) 24𝑔𝑙

𝑛
sin(𝛼 − 𝜓) = 0. (4)

The obtained Eq. (4) is the equation of free oscillations (not disturbed by
the continuing seismic effect).

Figure 3. Position of the support at the

moment of maximum lifting of the centre

of gravity (𝑡 = 0)

Figure 4. The support of the building.

Maximum deviation after changing the

axis of rotation

For a complete description of the evolutionary process of support oscillations,
we supplement Eq. (4) with the initial conditions, taking the maximum
deflection of the support after the seismic shock shown in Figure 3 for the
initial position at zero time. Then at the moment of time corresponding
to the highest ascent of the centre of gravity of the support (the centre of
rotation of the support is located at its lower right point, see Figure 3) the
movement of an individual support is described by Eq. (4) with the initial
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conditions (we assume the deflection angle positive)

𝜓1(0) = 𝜓𝑐𝑜𝑛𝑠𝑡, ̇𝜓1(0) ∶ 𝜓𝑐𝑜𝑛𝑠𝑡 > 0. (5)

Under the influence of the gravity of the support and the entire building, the
centres of gravity of the supports will tend to return to their original position.
In this case, the angle 𝜓1 > 0, 𝜓1 → 0, in accordance with the solution of the
Cauchy problem (4), will tend to zero. At that moment, when the magnitude
of the angle equals zero, the inertial forces will force the building and the
supports to move further in the same horizontal direction, which will lead
(after the impact of the support on the base surface) to a change of the
rotation axis of the supports, see Figure 4. The motion of the support system
and the building itself is still described by exactly the same equations, but
with the variable 𝜓1 changed for 𝜓2:

̈𝜓2 − ( 𝑛𝑚 + 2𝑀
12𝑙2 + 𝑛𝑚

) 24𝑔𝑙
𝑛

sin(𝛼 − 𝜓2) = 0 (6)

and with other initial conditions (again we consider the deflection angle 𝜓2
to be positive)

𝜓2(0) = 0,
̇𝜓2(0) = ̇𝜓1(0).

(7)

It is important to note that at the time of the collision of the support with
the ground surface, the system consisting of the building and the supports
loses some fraction of the kinetic energy. Setting the restitution coefficient to
be equal to 𝐶𝑟 = (1 − 𝜀) < 1 and considering the kinetic energy losses, we
arrive at the relation

𝐽
2

�̇�2
𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑟

𝐽
2

�̇�2
𝑏𝑒𝑓𝑜𝑟 ⇒ �̇�𝑎𝑓𝑡𝑒𝑟 = √𝐶𝑟�̇�𝑏𝑒𝑓𝑜𝑟, (8)

which, in turn, makes it possible to determine the new velocities of the
supports after their collisions with the surface and recalculate the initial
conditions of the problems (5) and (7) when going through the zero value of
the rotation angle using the formulas

𝜓𝑘+1(𝑡 + 0) = 𝜓𝑘(𝑡 − 0),
̇𝜓𝑘+1(𝑡 + 0) = −√𝐶𝑟

̇𝜓𝑘(𝑡 − 0),
(9)

for the generalized equation of motion of the supports and the building:

̈𝜓 = 𝑠𝑖𝑔𝑛(𝜓) ( 𝑛𝑚 + 2𝑀
12𝑙2 + 𝑛𝑚

) 24𝑔𝑙
𝑛

sin(𝛼 − 𝑠𝑖𝑔𝑛(𝜓)𝜓). (10)

The formulated system can be solved by means of any stable numerical

method, for example, the 4𝑡ℎ-order Runge–Kutta method with automatic
step selection. We get the following plots for the solutions (Figures 5–7).
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Figure 5. The angle of deviation from the vertical. The solid line corresponds to the

recovery coefficient 𝐶𝑟 = 0.9, the dashed line — to 𝐶𝑟 = 0.8

Figure 6. The rate of change of the deviation angle from the vertical. The solid line

corresponds to the recovery coefficient 𝐶𝑟 = 0.9, the dashed line — to 𝐶𝑟 = 0.8

3. Conclusion

The model (4) is a nonlinear conservative dynamical system. The motion
of the supports and the building body during the non-linear oscillations can
be considered as oscillations of the coupled physical pendulums. At the same
time, the coupling of pendulums is not conservative, but contains a factor
proportional to the rolling friction of the supports on the base of the building
body. Moreover, the rolling radius depends on the angle: the larger the angle
𝜓, the smaller the radius, which means greater friction force between the 𝑛
supports and the base of the building.
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Figure 7. Phase portrait of the “oscillatory system” (𝐶𝑟 = 0.8).

In addition, of course, this entire unified system, including the reaction
of the soil, moves under the action of a seismic strongly oscillating and
irregular disturbance generated by an earthquake. Only as a result of the
joint consideration of all these factors and we can count on an adequate
description of the deterministic dynamics of the building under the influence
of seismic perturbations from an earthquake.
However, even the analysis of equation (4) allows detuning of the natural

frequencies of free vibrations of a building system on supports by varying the
weight of the building and the number of supports.
The equation obtained by us is valid for angles 𝜓 < 𝛼, but it can be easily

generalized to the case 𝜓 > 𝛼, when the movement of the supports will cease
to be oscillatory, and the whole structure will lose stability. However, this
case, interesting while considering the driving forces of horizontal seismic
vibrations, will be analysed elsewhere.
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