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We consider the problem of integrating a given differential equation in algebraic
functions, which arose together with the integral calculus, but still is not completely
resolved in finite form. The difficulties that modern systems of computer algebra
face in solving it are examined using Maple as an example. Its solution according
to the method of Lagutinski’s determinants and its implementation in the form of
a Sagemath package are presented.
Necessary conditions for the existence of an integral of contracting derivation

are given. A derivation 𝐷 of the ring 𝐴 will be called contracting, if such basis
𝐵 = {𝑚1, 𝑚2, … } exists in which 𝐷𝑚𝑖 = 𝑐𝑖𝑚𝑖 + 𝑜(𝑚𝑖). We prove that a contracting
derivation of a polynomial ring 𝑅 admits a general integral only if among the indices
𝑐1, 𝑐2, … there are equal ones. This theorem is convenient for applying to the problem
of finding an algebraic integral of Briot–Bouquet equation and differential equations
with symbolic parameters. A number of necessary criteria for the existence of an
integral are obtained, including those for differential equations of the Briot and
Bouquet. New necessary conditions for the existence of a rational integral concerning
a fixed singular point are given and realized in Sage.

Key words and phrases: Darboux polynomials; algebraic integrals of differential
equations; finite solution; Sage; Sagemath; Maple

1. De Beaune problem

In the theory of differential equations, it is common from the very beginning
to choose a class of functions in which solutions of differential equations are
sought so wide that the initial problem has solutions for almost all initial
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data. In the case of symbolic integration, or finding the solution in finite
form, on the contrary, this class is constricted to make it possible in a finite
number of operations, first, to find out whether the given differential equation
has a general solution in this class, and second, to write out this solution
explicitly. The simplest class, which could be expected to possess the above
two properties, is the set of algebraic functions.
The problem of integrating differential equations in algebraic functions

arose as early as the 1630s, when Forimond de Beaune proposed to Descartes
several “inverse tangent problems” [1, Pp. 510–518]. We formulate this purely
algebraic problem as follows.

Problem 1 (de Beaune). Clarify whether a given differential equation

𝑝(𝑥, 𝑦)𝑑𝑥 + 𝑞(𝑥, 𝑦)𝑑𝑦 = 0, 𝑝, 𝑞 ∈ 𝑘[𝑥, 𝑦], (1)

has an integral 𝑟 in the field 𝑘(𝑥, 𝑦); in the case of a positive answer, write out
this integral.

Here 𝑘 is the field of constants, commonly represented by ℚ, ℂ or ℚ[𝑎, 𝑏, … ],
where 𝑎, 𝑏, … are the parameters that enter the differential equation. There
is no reason to consider these cases separately, so we assume that 𝑘 is an
infinite field of characteristic zero.
The interest to the De Beaune problem sometimes faded away, sometimes

arose again. At the turn of the XIX–XX centuries, it was due to successes
in proving the nonexistence of algebraic integrals of dynamical systems;
among the papers of this period worth particular attention are the Poincaré
memoir [2, Pp. 35–95] and a series of articles by M.N. Lagutinski [3, 4]; the
biographical data were published by J.-M. Strelcyn [5, 6].
Recently, the classical problem of finding an algebraic integral has again

become relevant in connection with the development of algorithms for the
symbolic solution of differential equations suitable for implementation in
modern computer algebra systems [7, 8]. First of all, it should be noted that
popular computer algebra systems cannot efficiently recognize differential
equations having algebraic integrals.

Example 1. To confirm this statement the following test was used. Let
𝑢, 𝑣 — be arbitrary polynomials, then 𝑤 = 𝑢/𝑣 is an integral of the differential
equation

(𝑣𝜕𝑢
𝜕𝑥

− 𝑢 𝜕𝑣
𝜕𝑥

) 𝑑𝑥 + (𝑣𝜕𝑢
𝜕𝑦

− 𝑢𝜕𝑣
𝜕𝑦

) 𝑑𝑦 = 0.

Taking randomly 𝑢 and 𝑣, we get the differential equation

𝑝(𝑥, 𝑦)𝑑𝑥 + 𝑞(𝑥, 𝑦)𝑑𝑦 = 0, 𝑝, 𝑞 ∈ ℚ[𝑥, 𝑦].

An attempt to apply standard methods of solving differential equations to
this differential equation in the Maple computer algebra system reduces the
differential equation to a quadrature of the form

∫ 𝑟𝑑𝑥 + 𝑠𝑑𝑦 = 𝐶, 𝑟, 𝑠 ∈ ℚ(𝑥, 𝑦),

occupying many screens, moreover, Maple cannot take the written integrals.
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It is worth noting that for the symbolic solution of differential equations
in Maple the package DETools [9] is used. Within the second algorithm of
DETools the search for integrating factors in the ring ℂ[𝑥, 𝑦] is executed. The
equation generated in the test has several such integrating factors, namely, 𝑢
and 𝑣, so that Maple would have to cope with the test. However, the following
occurs:

— symgen returns two integrating factors, whose ratio yields the rational
desired integral,

— dsolve ignores the second factor and write out a quadrature which it can-
not calculate in elementary functions, although the full implementation
of Ostrogradski algorithm would cope with this difficulty.

Thus, usually Maple cannot recognize an algebraic integral, however, the
user can do it himself, looking at the result of applying the function symgen.
Insurmountable difficulties arise when 𝑝 and 𝑞 have common factors. The

methods implemented by Maple, first of all, relieve the ordinary differential
equation to be solved from common factors. The reduced equation may not
have integrating factors in the ring ℂ[𝑥, 𝑦], and finding factors from ℂ(𝑥, 𝑦)
leads to nonlinear equations for the coefficients and requires completely
different computational costs for which the developers of symgen did not go.
As a result, e.g., when

𝑢 = (𝑥2 + 𝑦)5(𝑥 − 𝑦6 + 1) + 1, 𝑣 = (13𝑥𝑦8 + 𝑦5 + 3𝑥𝑦 + 2)(𝑥2 + 𝑦)4,

symgen finds one factor from ℚ[𝑥, 𝑦] and nothing else.

Despite the antiquity of the de Beaune problem, we do not have an algorithm
to solve it in a finite number of operations. The de Beaune problem is
equivalent to the problem of integrating a partial differential equation

𝑝𝜕𝑟
𝜕𝑦

− 𝑞 𝜕𝑟
𝜕𝑥

= 0

in the field 𝑘(𝑥, 𝑦); we will further briefly write it as 𝐷𝑟 = 0. By the method
of uncertain coefficients, we can substitute into the equation 𝐷𝑟 = 0 the
expression

𝑟 = 𝑎 + ⋯ + 𝑏𝑦𝑛

1 + ⋯ + 𝑐𝑦𝑛

and obtain a system of nonlinear algebraic equations for finding the coefficient
𝑎, 𝑏, 𝑐, … . The solvability of this system can be determined in a finite number
of steps and in a purely algebraic way. Therefore, in a finite number of
operations one can find out whether a given differential equation has rational
integrals whose degree does not exceed a given number 𝑛.
The problem of finding the upper bound for the degree of the sought integral

was noted by Descartes, and in some cases was resolved by Poincaré [2], pp.
35-95. The idea of the Poincaré method is as follows. If a differential equation
admits a rational integral, then its integral curves form a linear sheaf of
algebraic curves of some order 𝑛, this immediately follows from a comparison
of the Cauchy theorem from the analytic theory of differential equations [10]
and Bertini’s theorem from the theory of algebraic curves [11]. Two arbitrary

curves of the sheaf intersect at 𝑛2 fixed points. On the other hand, according
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to the Cauchy theorem, these curves can intersect only at those points at
which the polynomials 𝑝 and 𝑞 vanish simultaneously; in the analytical theory
of differential equations, such singular points are called fixed points. If the
orders of the curves 𝑝(𝑥, 𝑦) = 0 and 𝑞(𝑥, 𝑦) = 0 do not exceed 𝑚, then
𝑛 ⩽ 𝑚. However, it is impossible to bring this idea to a rigorous statement:
among the intersection points of the integral curves there may be multiple
and infinitely distant ones, as well as at fixed singular points of the differential
equation, the solutions may have various kinds of “degeneracies”. That is why
M.N. Lagutinski carefully notes that the “French scientist in the work just
referred deduces a number of equalities and inequalities that in some cases
achieve the goal of indicating the upper bound of the order 𝑛” [3, P. 181].
Taking into account that “the difficulties of this way for solving this problem
have stopped even H. Poincaré” [3], it is not hard to understand why in all
modern implementations of algorithms for finding integrals, the order of the
integral is assumed to be given [12].
The de Beaune problem, in which a bound for the orders of considered

integrals is given, will be referred to as a bounded problem.

Problem 2 (The bounded de Beaune problem). Clarify whether
a given differential equation

𝑝(𝑥, 𝑦)𝑑𝑥 + 𝑞(𝑥, 𝑦)𝑑𝑦 = 0, 𝑝, 𝑞 ∈ 𝑘[𝑥, 𝑦], (2)

admits an integral 𝑟 in the field 𝑘(𝑥, 𝑦) whose order does not exceed a given
number 𝑁, and in case of positive answer, write out this integral.

Practically the described solution of a system of nonlinear algebraic equa-
tions requires considerable computation resources even at 𝑁 = 3. Therefore,
the authors of algorithms for solving this problem try to avoid the solution of
nonlinear systems. Among the implemented algorithms, worth special atten-
tion are the Lagutinski’s method of determinants and the method proposed
by Jacques–Arthur Weil in 1985 based on power series expansion [12].

2. The bounded de Beaune problem and Lagutinski’s
method of determinants

Lagutinski’s method allows searching for particular and general integrals of
ring derivations of sufficiently general form. An up-to-date presentation of
this method for the case of the ℂ[𝑥, 𝑦] ring is given in [13,14], and the general
case is considered in [15]. For convenience of reference we present here a brief
description of the method.
Let 𝑅 be a ring with derivation 𝐷 and field of constants 𝑘. Consider 𝑘 to

be an arbitrary field of characteristic zero and ℚ ∈ 𝑘. Let us call a general
integral of this derivation a pair of elements 𝜓1, 𝜓2 linearly independent over
the field 𝑘, satisfying the equality

𝜓1𝐷𝜓2 = 𝜓2𝐷𝜓1. (3)

If the ring 𝑅 is integral, then the derivation is naturally continued on its
field of quotients, and the fraction 𝜓1/𝜓2 satisfies the equation

𝐷(𝜓1/𝜓2) = 0.
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We will deal with rings where a basis can be introduced in the following
sense.

Definition 1. A countable ordered set 𝐵 of elements 𝑚𝑗 of a ring 𝑅 will

be called a basis of the ring if

1) any element of the ring 𝑅 can be presented as a linear combination of
a finite number of elements of the set 𝐵 with constant coefficients;

2) a product of any two elements of the set 𝐵 belongs to 𝐵, and follows
strictly after both efficients, i.e., 𝑚𝑖𝑚𝑗 = 𝑚𝑛 and 𝑛 is strictly greater than

𝑖 and 𝑗.
Let us introduce the ordering relationship in the basis, i.e., the inequality

𝑚𝑖 < 𝑚𝑗 means that 𝑖 < 𝑗 and assume that the notation 𝑢 = 𝑜(𝑚𝑖) means
that the representation of the element 𝑢 of the ring 𝑅 in the form of a linear
combination of basis elements contains the basis elements whose numbers are
strictly larger than 𝑖. If 𝑢 = 𝑎𝑚𝑖 + 𝑜(𝑚𝑖), 𝑎 ≠ 0, then the addend 𝑎𝑚𝑖 will
be called the lowest term in 𝑢.
In contrast to the common agreement, we call the number of the greatest

basis term entering the decomposition of an element 𝑢 in the basis an order
of this element.

Example 2. In the ring 𝑅 = ℚ[𝑥, 𝑦] a system of various monomials may
be taken to be a basis by accepting the glex-ordering:

1, 𝑦, 𝑥, 𝑦2, 𝑥𝑦, 𝑥2, 𝑦3, 𝑦2𝑥, 𝑦𝑥2, 𝑥3, …

Below this basis will be referred to as glex-basis. In this case, for example,

𝑦2 + 𝑥𝑦 + 3𝑥3 = 𝑦2 + 𝑜(𝑦2),

and the order of this element equals 10.

The calculations of integrals is closely related to Lagutinski’s determinants.

Definition 2. Compose an infinite matrix with the first row

𝑚1, 𝑚2, … ,

the second row being the first derivative of the first one,

𝐷𝑚1, 𝐷𝑚2, … ,

the third row being the second derivative of the first one,

𝐷2𝑚1, 𝐷2𝑚2, … ,

and so on to infinity. A determinant of the corner minor of the 𝑛-th order of
this matrix, i.e.,

det

⎛⎜⎜⎜⎜⎜
⎝

𝑚1 𝑚2 … 𝑚𝑛
𝐷𝑚1 𝐷𝑚2 … 𝐷𝑚𝑛

⋮ ⋮ ⋱ ⋮
𝐷𝑛−1𝑚1 𝐷𝑛−1𝑚2 … , 𝐷𝑛−1𝑚𝑛

⎞⎟⎟⎟⎟⎟
⎠

(4)
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will be denoted by Δ𝑛 and called Lagutinski’s determinant of the 𝑛-th order.

The following theorem provides a complete solution of the bounded de
Beaune problem.

Theorem 1 (by M.N. Lagutinski). Let 𝑅 be a ring of polynomials.

1. A general integral exists then and only then, when all Lagutinski’s determi-
nants of sufficiently high order are equal to zero.

2. A general integral of the order 𝑁 exists then and only then, when Δ𝑁 = 0;
in this case the integral can be calculated as a ratio of the corresponding
minors of this determinant.

The proof of Lagutinski’s theorem and the rule of choosing minors to
construct integrals is given in [15].

Remark 1. From this theorem, in particular, it follows that finding a rational
integral does not require the field extension. If 𝑝 and 𝑞 belong to ℚ[𝑥, 𝑦] and
there is an integral in ℂ(𝑥, 𝑦), then applying this theorem at 𝑘 = ℂ, we see that
for a certain 𝑁 Δ𝑁 = 0. The calculation of Lagutinski’s determinants does not
lead beyond the field ℚ. Therefor, applying this theorem at 𝑘 = ℚ, we arrive at
the existence of an integral in the field ℚ(𝑥, 𝑦). For this reason, below we mean
the integral of an equation with integer coefficients to be an element of ℚ(𝑥, 𝑦).

Lagutinski’s method agrees well with the concept of operating with rings,
accepted in Sage [16]. We have written a package Lagutinski [17] in Sage,
which allows calculation of Lagutinski’s determinants and integrals in this
environment. The package was presented in 2016 at a number of conferences
on computer algebra [18–20]. Here we restrict ourselves to one example
illustrating the application of this package. In more detail the technique of
its application is described in [21].

Example 3. Let the Bernoulli differential equation be given,

𝑦(𝑥 + 1)𝑑𝑦 − (𝑦2 + 𝑥 + 2)𝑑𝑥 = 0,

which for certain possesses an algebraic integral. Let us find it using Lagutin-
ski’s method. For this purpose we specify in a usual manner the corresponding
differential ring and its basis:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: D=lambda phi: y*(x+1)*diff(phi,x)+(y^2+x+2)*diff(phi,y)
sage: B= sorted(((1+x+y)^5).monomials(),reverse=0)

and load our package

sage: load(”lagutinski.sage”)
None

Now we can calculate Lagutinski’s determinants, e.g.,

sage: lagutinski_det(2,B)
y^2 + x + 2
sage: lagutinski_det(3,B)
x^3 + x*y^2 + 5*x^2 + y^2 + 8*x + 4

Let us find that of the determinants, which equals zero:
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sage: lagutinski_det(5,B)==0
False
sage: lagutinski_det(6,B)==0
True

Since Δ5 ≠ 0, and Δ6 = 0, the integral will be:
sage: lagutinski_integral(6,B)
(-54*x^2 + 18*y^2 - 72*x)/(-18*y^2 - 36*x - 54)

Since the calculations are cumbersome, the first argument of this function
should coincide with the smallest number of zero determinant.

The theory and its implementation are illustrated by Yu Ying by the exam-
ples taken from the book of problems by A. F. Filippov, the report is published
in [22]. The numerical experiments carried out show that Lagutinski’s method
practically allows fast and resource-saving detection of the presence of a ra-
tional integral. However, the method requires considerable computational
costs for the calculation of this integral. Note that the problem of determin-
ing the boundary for the integral order, always discussed in theory, appeared
insignificant in practice, since there were no differential equations in the book
of problems, whose integral curves had the order of 10 or higher.

3. Necessary conditions for the existence of an integral
of contracting derivation

In application to a non-bounded de Beaune problem the Lagutinski method
yields a sequence of determinants Δ1, Δ2, … .
According to the theorem 1 this sequence is finite then and only then

when an integral in 𝑘(𝑥, 𝑦) exists. However, its condition cannot be checked
constructively, moreover, the calculation of determinants of the order of 20÷30
already requires considerable computational costs. Therefore, it is important
to transform this statement into a necessary condition of the integral existence,
at least for some classes of derivations.

Definition 3. A derivation 𝐷 of the ring 𝐴 will be called contracting, if
such basis 𝐵 = {𝑚1, 𝑚2, … } exists in which

𝐷𝑚𝑖 = 𝑐𝑖𝑚𝑖 + 𝑜(𝑚𝑖). (5)

Any basis, in which the differentiation operation satisfies the conditions 5,
will be called a contracted derivation of 𝐷, 𝑐𝑖 will be called indices of con-
traction in the basis 𝐵.

Generally, there can be several contracting bases, and the indices of contrac-
tion 𝑛 then can be different. The possibility of applying the integral existence
criteria presented below essentially depend on the possibility to choose a basis
that contracts a given derivation.

Remark 2. The proposed name refers to the theory of contracting operators
in Banach spaces. In the present case, of course, there is no norm, but the
basis specifies a certain “topology”, and the condition contained in the definition
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indicates the fact that the derivation 𝐷 transforms the basis element 𝑚𝑖 into the
element 𝐷𝑚𝑖, which is a linear combination of basis elements whose numbers
are greater than 𝑖.

Example 4. In the ring 𝑅 = ℚ[𝑥, 𝑦] the derivation

𝐷 = (𝑎𝑦 + 𝑐𝑥 + … ) 𝜕
𝜕𝑦

− (𝑏𝑥 + … ) 𝜕
𝜕𝑥

, (6)

is contracting with respect to glex-basis 𝐵 = {1, 𝑦, 𝑥, 𝑦2, 𝑦𝑥, 𝑥2, … }.
Indeed,

𝐷(𝑦𝑛𝑥𝑚) = 𝑛(𝑎𝑦 + 𝑐𝑥 + … )𝑦𝑛−1𝑥𝑚 − 𝑚(𝑏𝑥 + … )𝑦𝑛𝑥𝑚−1 =
= (𝑎𝑛 − 𝑚𝑏)𝑦𝑛𝑥𝑚 + 𝑜(𝑦𝑛𝑥𝑚).

The numbers 𝑎𝑛 − 𝑚𝑏 that appeared here are indices of contraction.

Theorem 2 (necessary criterion for existence of general integrals).
A contracting derivation of a polynomial ring 𝑅 admits a general integral only
if among the indices of contraction there are equal ones.

This simple criterion follows from theorem 1 using the following lemma.

Lemma 1. Let the derivation 𝐷 be contracting, then in a suitable basis

Δ𝑛 = 𝑊(𝑐1, 𝑐2, … , 𝑐𝑛)
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) ,

where 𝑊 is a Vandermonde determinant.

Proof. In a suitable basis

𝐷𝑚𝑖 = 𝑐𝑖𝑚𝑖 + 𝑜(𝑚𝑖),

from where
𝐷𝑜(𝑚𝑖) = 𝑜(𝑚𝑖)

and further
𝐷𝑚𝑚𝑖 = 𝑐𝑚

𝑖 𝑚𝑖 + 𝑜(𝑚𝑖).
The Lagutinski determinant Δ𝑛 is formed by linear combinations of the

products

𝐷𝑖1𝑚1𝐷𝑖2𝑚2 ⋯ = (𝑐𝑖1
1 𝑐𝑖2

2 … )
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) ,

and, therefore, is a sum of the expression

∑
𝑖1,𝑖2,…

(−1)𝜎(𝑖1,𝑖2,… )𝑐𝑖1
1 𝑐𝑖2

2 …
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖)
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and higher-order terms. In the expression written out it is easy to recognize
a Vandermonde determinant

𝑊(𝑐1, … , 𝑐𝑛) = det

⎛⎜⎜⎜⎜⎜
⎝

1 1 … 1
𝑐1 𝑐2 … 𝑐𝑛
⋮ ⋮ ⋱ ⋮

𝑐𝑛−1
1 𝑐𝑛−1

2 … 𝑐𝑛−1
𝑛

⎞⎟⎟⎟⎟⎟
⎠

.

Example 5. The derivation

𝐷 = (𝑥 + 𝑥4𝑦) 𝜕
𝜕𝑥

+ (𝑥 + 𝑦) 𝜕
𝜕𝑦

of the ring ℚ[𝑥, 𝑦] is contracting, since in the glex-basis

𝐵 = {1, 𝑦, 𝑥, 𝑦2, 𝑥𝑦, 𝑥2, … }

is true

𝐷(𝑥𝑛𝑦𝑚) = 𝑛𝑥𝑛𝑦𝑚 +(𝑥+𝑦)𝑚𝑥𝑛𝑦𝑚−1 +𝑜(𝑥𝑛𝑦𝑚) = (𝑛+𝑚)𝑥𝑛𝑦𝑚 +𝑜(𝑥𝑛𝑦𝑚).

The indices of contraction form a sequence 0, 1, 1, 2, … , in which equal
elements are present. Therefore

Δ2 = 𝑊(0, 1)𝑦 + 𝑜(𝑦) = 𝑦 + 𝑜(𝑦),

and then we obtain only

Δ𝑛 = 𝑊(0, 1, 1, … )
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) = 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) .

For small orders 𝑛 the validity of this formula is easily checked by direct
calculation:

sage: D=lambda phi: (x+x^4*y)*diff(phi,x)+(x+y)*diff(phi,y)
sage: prod(B[:2])
y
sage: sorted(lagutinski_det(2,B).monomials(),reverse=0)
[y, x]
sage: prod(B[:3])
x*y
sage: sorted(lagutinski_det(3,B).monomials(),reverse=0)
[x^2, x^4*y^2, x^5*y, x^6, x^7*y^3, x^8*y^2]
sage: prod(B[:4])
x*y^3
sage: sorted(lagutinski_det(4,B).monomials(),reverse=0)
[x^2*y^2, x^3*y, x^4, x^4*y^4, x^5*y^3, x^6*y^2, x^7*y, x^8,
x^7*y^5, x^8*y^4, x^9*y^3, x^10*y^2, x^11*y, x^10*y^6,
x^11*y^5, x^12*y^4, x^13*y^3]
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4. Necessary conditions for the existence of a rational
integral of the Briot–Bouquet equation

The theorem 2 is convenient for applying to the problem of finding an
algebraic integral of the differential equation

(𝑎𝑦 + 𝑐𝑥 + … )𝑑𝑥 + (𝑏𝑥 + … )𝑑𝑦 = 0, (7)

which we, following E. Ains [23, n. 12.6], will refer to as the Briot–Bouquet
equation.

Remark 3. Equation (7) possesses a number of unexpected analytical prop-
erties and for a long time attracts the attention of researchers. The initial
problem

⎧{
⎨{⎩

(𝑎𝑦 + 𝑐𝑥 + … )𝑑𝑥 + (𝑏𝑥 + … )𝑑𝑦 = 0,
𝑦|𝑥=0 = 0

does not satisfy the conditions of the Cauchy theorem. Nevertheless, in 1856
Briot and Bouquet [23, n. 12.6], has proved that at 𝑎/𝑏 ∉ ℤ this problem admits
a unique solutions holomorphic in the vicinity of zero. The question of whether
the initial problem admits other solutions having a singularity at zero, was the
subject of research by Briot and Bouquet, Picard and Poincaré [24, n. 426].

An integral of the equation (7) is also an integral of the derivation

𝐷 = (𝑎𝑦 + 𝑐𝑥 + … ) 𝜕
𝜕𝑦

− (𝑏𝑥 + … ) 𝜕
𝜕𝑥

, (8)

which as it has been shown in the example 4, contracts the glex-basis

𝐵 = {1, 𝑦, 𝑥, 𝑦2, 𝑥𝑦, 𝑥2, … }.

From here, as a consequence of theorem 2, immediately follows:

Theorem 3 (about the Briot–Bouquet equation). The differential
Briot–Bouquet equation (7) can have a rational integral in 𝑘(𝑥, 𝑦) only if 𝑎 and
𝑏 are linearly dependent over the field ℚ.

Proof. Applying the derivation (8) to a monomial, we get

𝐷𝑥𝑛𝑦𝑚 = (𝑎𝑦 + 𝑐𝑥 + … )𝜕𝑥𝑛𝑦𝑚

𝜕𝑦
− (𝑏𝑥 + … )𝜕𝑥𝑛𝑦𝑚

𝜕𝑥
=

= (𝑚𝑎 − 𝑛𝑏)𝑥𝑛𝑦𝑚 + 𝑜(𝑥𝑛𝑦𝑚).

If there are no integer relations between 𝑎 and 𝑏, then among the indices of
contraction 𝑚𝑎 − 𝑛𝑏 there are no equal ones, so that according to theorem 2
this derivation does not admit general integrals. �

Example 6. The general solution of the linear equation

(𝑎𝑦 + 𝑐𝑥)𝑑𝑥 + 𝑏𝑥𝑑𝑦 = 0
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is easy to write out

𝑥𝑎/𝑏 (𝑦 + 𝑐𝑦
𝑏 + 𝑎

) = 𝐶,

where 𝐶 is the integration constant. Whether the written integral is algebraic
or not, depends on whether the ratio 𝑎/𝑏 is a rational number or not, which
completely agrees with the proved lemma.

Example 7. According to the proved theorem the equation

(𝑎𝑦 + 𝑐𝑥)𝑑𝑥 + (𝑏𝑥 + 𝑥𝑦)𝑑𝑦 = 0.

has no algebraic integral at arbitrary 𝑎 and 𝑏.

5. Necessary conditions for the existence of a rational
integral concerning a fixed singular point

It is easily seen that the point (0, 0) is a fixed singular point of the differential
equation (7). Recall that the Cauchy theorem is applicable to all points of
the 𝑥𝑦-plane except those in which the polynomials 𝑝 and 𝑞 from ℂ[𝑥, 𝑦]
simultaneously turn into zero. These points are called fixed singular points of
the differential equation [10]. If we put the origin of the coordinate system
into a fixed singular point, then

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎11𝑥 + 𝑎12𝑦 + … )𝑑𝑥 + (𝑎21𝑥 + 𝑎22𝑦 + … )𝑑𝑦,

where … denote the terms of the order higher than the first one. The
coefficient 𝑎22 prevents the application of theorem 3, however, it is easy to
get rid of it by a linear change of variables.

Theorem 4. Let neither 𝑝, nor 𝑞 be reducible to a constant and the field of
constants 𝑘 is algebraically closed. Then to any fixed singular point (𝑥0, 𝑦0) of
the differential equation we can relate a new system of coordinates

⎧{
⎨{⎩

𝑥 = 𝑥0 + 𝜉 + 𝛼𝜂, 𝛼 ∈ 𝑘
𝑦 = 𝑦0 + 𝜂,

(9)

in which this differential equation takes the form of Briot–Bouquet equation, i.e.,

(𝑎𝜂 + 𝑐𝜉 + … )𝑑𝜉 + (𝑏𝜉 + … )𝑑𝜂,

where … denotes the higher-order terms.

Proof. Since the field 𝑘 is algebraically closed, the curves 𝑝(𝑥, 𝑦) = 0 and
𝑞(𝑥, 𝑦) = 0 intersect at some points of the 𝑥𝑦-plane. Let us denote one on
these points as (𝑥0, 𝑦0) and put the origin of coordinates into this point. Then

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎11𝑥 + 𝑎12𝑦 + … )𝑑𝑥 + (𝑎21𝑥 + 𝑎22𝑦 + … )𝑑𝑦,
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where … denotes higher-order terms. The differential equation 𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 0
corresponds to the derivation

𝐷 = (𝑎11𝑥 + 𝑎12𝑦 + … ) 𝜕
𝜕𝑦

− (𝑎21𝑥 + 𝑎22𝑦 + … ) 𝜕
𝜕𝑥

.

If 𝑎22 ≠ 0, then it can be eliminated by a linear transformation

⎧{
⎨{⎩

𝑥 = 𝜉 + 𝛼𝜂, 𝛼 ∈ 𝑘,
𝑦 = 𝜂.

Under this transformation the form changes as follows:

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (… )𝑑𝜉 + [(𝑎11(𝜉 + 𝛼𝜂) + 𝑎12𝜂)𝛼 + 𝑎21(𝜉 + 𝛼𝜂) + 𝑎22𝜂 + … ]𝑑𝜂.

Equating the coefficient at 𝜂𝑑𝜂 to zero, we arrive at the quadratic equation

𝑎11𝛼2 + (𝑎12 + 𝑎21)𝛼 + 𝑎22 = 0

for finding the parameter 𝛼. Since the field 𝑘 is algebraically closed, this
quadratic equation has roots in 𝑘, and for such a choice of the parameter the
expression will get the desired form

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎𝜂 + 𝑐𝜉 + … )𝑑𝜉 + (𝑏𝜉 + … )𝑑𝜂.
Collecting the results of theorems 3 and 4 together, we get the following

algorithm that allows clarifying whether the given differential equation (1)
has a rational integral in the field 𝑘(𝑥, 𝑦):
1) find the fixed singular point (𝑥0, 𝑦0);
2) execute a linear transformation, containing the parameter 𝛼, in the form

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎11𝜉 + 𝑎12𝜂 + … )𝑑𝜉 + (𝑎21𝜉 + 𝑎22𝜂 + … )𝑑𝜂;

3) determine the value of the parameter 𝛼 from the quadratic equation
𝑎22 = 0;

4) check whether for such value of 𝛼 the coefficients 𝑎12 and 𝑎21 are linearly
dependent over ℚ.
If yes, they are linearly dependent, then the differential equation can admit

a rational integral, otherwise it does not exist. It is worth noting that the
formulated criterion is necessary, but not sufficient.
Our Lagutinski package includes the function lagutinski_ab, which for

specified 𝑝 and 𝑞 returns true, if at the first fixed singular point the above
quantities are linearly dependent.

Example 8. For checking, let us begin with the linear equation

(𝑥 + 𝑦)𝑑𝑥 + 𝑥𝑑𝑦 = 0,

the general solution of which is expressed as

𝑦(𝑥) = −𝑥
2

+ 𝐶
𝑥

.
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We have:

sage: x,y=var('x,y')
sage: lagutinski_ab(x+y,x)
True

Example 9. Maple cannot make any definite conclusion about the equation

(2 − 𝑥2 − 𝑦2)𝑑𝑥 + (𝑥 − 𝑦)𝑑𝑦 = 0.

The application of our criterion yields

sage: x,y=var('x,y')
sage: lagutinski_ab(2-x^2-y^2,x-y)
False

Therefore, this equation does not admit a rational integral in the field
ℂ(𝑥, 𝑦).

It is well known that an arbitrary differential equation (1) cannot be
integrated in elementary functions. The proposed algorithm specifies the “de-
generacies” that should occur with the coefficients 𝑝 and 𝑞 of the differential
equation considered to make it integrable in such functions. If the polyno-
mials 𝑝, 𝑞 belong to ℚ[𝑥, 𝑦], then the application of the described algorithm
introduces algebraic numbers twice: first, in finding the fixed singular points
and, second, in searching for the parameter 𝛼. Therefore, generally the ratio
of the coefficients 𝑎12 and 𝑎21 appears to be an algebraic number, so that the
equation does not admit an algebraic integral even in ℂ(𝑥, 𝑦).

Remark 4. It is natural to draw an analogy here with the integration of
rational functions: in the general case, the denominator of a rational function
has simple zeros, and the integral of such a function consists of logarithmic terms;
the integral will be rational only in the exotic case when all the singularities are
multiple.

6. Differential equations with symbolic parameters

The theorem 3 is seen useless in the case, when the coefficients of Briot–
Bouquet equation belong to the field ℚ. Actually, theorem 2 provides
a convenient criterion of unsolvability when the considered equation con-
tains indefinite parameters 𝑎, 𝑏, … , in other words, when as the field 𝑘 we
consider the field ℚ(𝑎, 𝑏, … ), generated by the variables 𝑎, 𝑏, … algebraically in-
dependent over ℚ. With their appearance the problem of finding an algebraic
integral is separated into two problems:

— to clarify whether the differential equation admits a rational integral in
the field 𝑘(𝑥, 𝑦), i.e., “in the general case”;

— to find particular values of the parameters 𝑎, 𝑏, … in ℂ, for which the
differential equation admits a rational integral in the field ℂ(𝑥, 𝑦).

The first problem for the equation (7) was completely solved by theorem 3:
this equation has no rational integral in the general case.
Now let us proceed to the second problem. Without loss of generality,

we can assume that 𝑝 and 𝑞 are polynomials with respect to 𝑥, 𝑦 and all
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parameters 𝑎, 𝑏, … ; for clarity let us consider the set of complex values
of the parameters 𝑎, 𝑏, … as a point in a finite-dimensional affine space 𝐴
over the field ℂ. Accepting this agreement and using common notations of
algebraic geometry [25], the theorem 1 for the field 𝑅 = 𝑄[𝑥, 𝑦, 𝑎, 𝑏, … ] can
be reformulated in the following way.

Theorem 5. Let the coefficients Δ𝑛 of monomials 𝑥𝑛𝑦𝑚 generate an ideal
𝐽𝑛 of the ring ℚ[𝑎, 𝑏, … ]. The set of points (𝑎, 𝑏, … ) of the affine space 𝐴, for
which the differential equation

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 0, 𝑝, 𝑞 ∈ ℚ[𝑥, 𝑦, 𝑎, 𝑏, … ],

admits a rational integral from ℚ(𝑥, 𝑦), whose order does not exceed, is an
algebraic affine set 𝑍(𝐽𝑛) in 𝐴.

Proof. If the point (𝑎, 𝑏, … ) belongs to 𝑍(𝐽𝑛), then Δ𝑛(𝑥, 𝑦, 𝑎, 𝑏, … ) at
such values of parameters 𝑎, 𝑏, … indentically turns into zero, and due to
the Lagutinski theorem 1 the differential equation admits a rational integral.
Conversely, if for some values of the parameters 𝑎, 𝑏, … the differential equation
admits a rational integral of the order 𝑛, then the Lagutinski determinant of
the same order turns into zero identically and, therefore, (𝑎, 𝑏, … ) belongs to
𝑍(𝐽𝑛). �

Generally, the set 𝑍(𝐽𝑛) can be empty or reducible.

Example 10. Consider again the linear equation

(𝑎𝑦 + 𝑐𝑥)𝑑𝑥 + 𝑏𝑥𝑑𝑦 = 0.

Let us specify the appropriate ring, derivation, and basis:

sage: R.<x,y,a,b,c> = PolynomialRing(QQ, 5)
sage: D=lambda phi: (a*y+c*x)*diff(phi,y) -b*x*diff(phi,x)
sage: B= sorted(((1+x+y)^30).monomials(),reverse=0)

Calculate the Lagutinski determinants:

sage: lagutinski_det(2,B).factor()
y*a + x*c
sage: lagutinski_det(3,B).factor()
b * a * x * (y*a + y*b + x*c)
sage: lagutinski_det(4,B).factor()
(-2) * b * a * x * (y*a + x*c) * (y*a + y*b + x*c) * (-
2*y*a^2 - y*a*b - 2*x*a*c + 2*x*b*c)

In the three-dimensional affine space 𝐴 the set 𝑍(𝐽2) represents a straight
line {𝑎 = 0, 𝑐 = 0}, the sets 𝑍(𝐽3), 𝑍(𝐽4) represent a union of two planes
{𝑎 = 0} ∪ {𝑏 = 0}, and so on.

According to the theorem 5 the values of the parameters 𝑎, 𝑏, … , for which
the differential equation

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 0, 𝑝, 𝑞 ∈ ℚ[𝑥, 𝑦, 𝑎, 𝑏, … ]

admits a rational integral of any order in ℂ(𝑥, 𝑦) for the set ∪𝑍(𝐽𝑛). It could
be expected that this set is also algebraic, as it usually happens in algebraic
problems. However, this is not true.
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Example 11. The differential equation from the example 6 has a rational
integral then and only then, when the ratio 𝑎/𝑏 is a rational number or when
𝑏 = 0. Therefore ∪𝑍(𝐽𝑛) represents a union of various planes

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ

in the three-dimensional affine space 𝐴.

Now let us reformulate the theorem 3 in these terms.

Theorem 6. The projection onto the plane 𝑎𝑏 of a set of all values of the
parameters 𝑎, 𝑏, … , at which the differential equation (7) admits a rational
integral in ℂ(𝑥, 𝑦), is a union of a certain number of straight lines of the form

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ

and points.

Proof. According to the theorem 5 the set of all points of affine space 𝐴,
at which the differential equation admits an integral from ℂ(𝑥, 𝑦), is a sum
of algebraic affine sets and, therefore, represents a union of irreducible affine
manifolds. And according to the theorem 3 a projection of this set onto the
plane 𝑎𝑏 is formed by points that are linearly dependent over ℚ.
This projection cannot coincide with the entire plane, therefore, it can be

decomposed into irreducible lines and points. Assume, in contradiction to the
theorem, that among these lines there is an irreducible line 𝐶 of the order 𝑟,
different from straight lines

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ.

According to the theorem 3 for any point (𝑎, 𝑏) ∈ 𝐶 of this curve it is
possible to specify one and only one such pair of mutually simple integer
numbers (𝑛, 𝑚) that

𝑛𝑎 + 𝑚𝑏 = 0, 𝑚 ⩾ 0.
From a geometric point of view this means that any point (𝑎, 𝑏) ∈ 𝐶

corresponds to the point (𝑛, 𝑚) of a projective straight line 𝑃 1
ℚ , i.e., we get

a mapping
𝑓 ∶ 𝐶 → 𝑃 1

ℚ .
The prototype of the point (𝑛, 𝑚) is the set of points (𝑎, 𝑏) of the line 𝐶 at

which the equality
𝑛𝑎 + 𝑚𝑏 = 0,

i.e., the points of intersection of the straight line 𝑛𝑎 + 𝑚𝑏 = 0 and the line
𝐶 in the plane 𝐴2

ℂ. By Bézout’s theorem, there are exactly 𝑟 such points,

therefore, there is a (1, 𝑟)-correspondence between the affine line 𝐶 over ℂ
and the projective straight line 𝑃 1 over ℚ. As soon as the set ℚ is countable
and the set of points of the algebraic line over ℂ is uncountable, the above is
impossible. Hence, the projection is a union of straight lines

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ.

and points. �
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As shown by example 11, the projection of a set of parameter sets 𝑎, 𝑏, … ,
at which the differential equation admits an algebraic integral can be a union
of countable sets of affine manifolds, projected into a family of straight lines

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ.

If, as Lagutinski hoped for, it would be possible to replace an infinite
sequence of determinants Δ2(𝑥, 𝑦, 𝑎, 𝑏, … ), Δ3(𝑥, 𝑦, 𝑎, 𝑏, … ), … with a finite
set of conditions, then this set would be an affine set. Thus, the appearance of
the infinite sequence is not a defect of the Lagutinski method, it indicates the
non-algebraic component of the theory of integration of differential equations
in algebraic functions. Thus, the bounded de Beaune problem is completely
solved by the Lagutinski method, and the unbounded de Beaune problem
with parameters inevitably introduces non-algebraic sets and therefore, it
does not admit a purely algebraic method of solution.

Conclusion

To summarize, let us list the main results of our consideration:

— Lagutinski’s method allows solving the bounded de Beaune problem 2
using a finite number of operations, its implementation in Sage faces but
one difficulty: with the growth of the boundary 𝑁 the calculation of de-
terminants requires more and more computer resources. The calculations
can be made faster by choosing a suitable basis; in contracted bases the
calculations are considerably more rapid (see lemma 1).

— For the unbounded problem 1 it appears possible to derive from Lagutinski
theorem the necessary and easily checked conditions of existence of
a rational integral. These criteria are applicable also in the cases, when the
standard approaches implemented in Maple yield no definite information,
see example 9.

— The above criterion appears to be rather useful for that problems with
parameters, when for a given differential equation, containing indefinite
parameters, one has to choose their values in a way providing the par-
ticular differential equation to admit an algebraic integral. This case
clearly demonstrates the reasons why the full solution of an unbounded
de Beaune problem is impossible: the desired set of the parameter values
is not always an algebraic set.
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