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A method of multivariate density estimation based on the reweighted nearest neighbours,
mimicking the natural neighbours techniques, is presented. Estimation of multivariate density
is important for machine learning, astronomy, biology, physics and econometrics. A 2-additive
fuzzy measure is constructed based on proxies for pairwise interaction indices. The neighbours
of a point lying in nearly the same direction are treated as redundant, and the contribution
of the farthest neighbour is transferred to the nearer neighbour. The calculation of the local
point density estimate is performed by the discrete Choquet integral, so that the contributions
of the neighbours all around that point are accounted for. This way an approximation to the
Sibson’s natural neighbours is computed. The method relieves the computational burden of the
Delaunay tessellation-based natural neighbours approach in higher dimensions, whose complexity
is exponential in the dimension of the data. This method is suitable for density estimates of
structured data (possibly lying on lower dimensional manifolds), as the nearest neighbours differ
significantly from the natural neighbours in this case.
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1. Introduction and Problem Formulation

Multivariate density estimates from finite samples play an important role in data
analysis and clustering [1]. Among other applications, density estimates provide a way
to construct density based metrics [2], density based averages [3, 4], perform density
based clustering, and also compute robustly the mode(s) of a distribution [5,6]. Practical
applications include data analysis and machine learning, anomaly detection, econometrics,
high energy physics, astronomy, flow cytometry, image analysis and computer vision to
name a few. For example, spatial distribution of cosmic matter at megaparsec scale was
analysed by using nonparametric density estimates in [7]. Density based metrics are often
used in unsupervised data analysis, e.g., in the DBSCAN algorithm [8].

Histograms are traditionally used as density estimates of single variable distributions.
Their use in the multivariate setting is problematic because of the rapidly growing number
of histogram bins, the majority of which remain empty. Kernel-based density estimates
due to the works by Parzen and Rosenblatt [1,5], often called Parzen-Rosenblatt windows,
is a popular multivariate approach, in which a point density estimate is constructed by
averaging the values of a kernel function of the distances between a fixed point and the
data. One problem with kernel density estimates is the bandwidth selection, which is
the smoothing parameter in this process. The values of the bandwidth parameter which
are too small result in spiky estimates, values that are too large result in oversmoothing.
There are approaches for automatic bandwidth selection based on cross-validation [9]
but they are computationally expensive.

Another family of density estimates is based on the notion of the Voronoi diagram [10].
A Voronoi cell is a set of points which are closer to one point from the sample than to any
other point in that sample. Intuitively, the volumes of Voronoi cells can serve as proxies
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for density estimation: small Voronoi cells imply high density. One can view Voronoi
cells as (polyhedral) bins in a histogram that contain a single datum. From the technical
viewpoint, Voronoi cells are not very convenient, as a) there are Voronoi cells of infinite
volume, and b) multiple calculation of Voronoi cell volumes is computationally expensive.
Instead the dual of the Voronoi diagram, the Delaunay tessellation, is used [11]. The
Delaunay tessellation is a partition of the convex hull of the data (and hence Delaunay
cells are finite), and since these cells are simplices, their volume is computed easily in
the multivariate setting. The method in [7] averages the reciprocals of the volumes of
the neighbouring Delaunay simplices to provide point density estimates at every point
in the sample. One important feature of Delaunay tessellation is that the neighbouring
simplices involve data located all around the point at which the density estimate is
computed. This feature led to the development of the method of “natural neighbours”
in scattered data interpolation [12].

The issue with Delaunay tessellation is its complexity: the number of Delaunay cells
grows exponentially with the dimension 𝑑 of the space, more precisely as 𝑂

(︀
𝑛⌈𝑑/2⌉

)︀
,

where 𝑛 is the sample size. This is a manifestation of the course of dimensionality.

Another approach to density estimation is based on the nearest neighbour type graphs,
including the 𝑘 nearest neighbour graph (kNN), minimum spanning tree (MST) and
Gabriel graph [13, 14]. The distance from a point to its nearest neighbour can give an
estimate of the density, as it provides the volume of an empty sphere near that point.
Compared to the Delaunay tessellation, there is no combinatorial explosion of complexity
with the increasing dimension, as no space partitioning is required (only 𝑛2 pairwise
distances are needed to construct the MST or kNN graph). The MST and Gabriel
graphs are subgraphs of the Delaunay graph, which prompted their use as proxies for
the Delaunay tessellation. But on the other hand, the nearest neighbours are not always
located all around a query point, and the nearest neighbour relation is not reciprocal. The
kNN graphs may not be connected, which makes them not fully suitable for proximity
calculations [14]. Selecting a larger value of 𝑘 also leads to oversmoothing.

In this paper we explore one method of density estimation based on the nearest
neighbours graph. In this method we take a sufficiently large value of 𝑘 in the kNN
density estimate, but ensure that only the neighbours located all around a query point are
counted. That is, we attempt to marry the kNN with the natural neighbours approach,
but without performing expensive Delaunay tessellation. To this end we use the notion of
the discrete Choquet integral with respect to a specially constructed fuzzy measure. It
allows one to account for correlations between the inputs, and explicitly model the notions
of redundancy and positive reinforcement. In particular we account for contributions of
the neighbours situated in the same direction from a query point and downweight the
contribution of the furthest. This way only the contributions to the density estimate
from the neighbours all around a query point will count.

The problem is formulated as follows. Given a sample of (independent, identically
distributed) data of size 𝑛 and dimension 𝑑,

𝒟 =
{︁
𝑥𝑗𝑖

}︁
𝑖=1,...,𝑑; 𝑗=1,...,𝑛

=
{︁(︁
𝑥𝑗1, . . . , 𝑥

𝑗
𝑑

)︁}︁
, 𝑗 = 1, . . . , 𝑛,

find a density estimate approximating the probability density of the distribution the
data were drawn from.

The paper is structured as follows. Section 2 presents the background material needed
for the rest of the paper. Section 3 presents the proposed kNN reweighting method,
including the construction of a 2-additive fuzzy measure from the interaction indices and
computation of the threshold for the size of the cone of directions in the multivariate
setting, so that the proportion of data located in such a code remains constant in different
dimensions. Section 4 provides a numerical illustration and Section 5 concludes.
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2. Preliminaries

2.1. Point Density Estimation Problem

Let the data set 𝒟 be generated by sampling from a distribution with probability
density 𝜌 : R𝑑 → [0, 1]. The goal of density estimation is to recover an approximation
to 𝜌, denoted 𝜌. Non-parametric methods do not assume any specific form of 𝜌 and
hence build 𝜌 based only on the data.

Building a histogram is the traditional approach which usually works in one or two
dimensions, but is not suitable in the multivariate setting because of the rapidly growing
number of histogram bins where the data are allocated. There are several approaches to
density estimation mentioned in the Introduction. In particular, kernel density estimates
provide density 𝜌(x) at a point using that point as a centre of a neighbourhood of
selected radius, while Voronoi diagrams provide point density estimates using the nearest
neighbours of the point x located all around it. By selecting a kernel function 𝐾𝑎 with
bandwidth parameter 𝑎 we have

𝜌(x) =
1

𝑛𝑎

𝑛∑︁
𝑗=1

𝐾𝑎(x,x𝑗).

The bandwidth 𝑎 affects the roughness or smoothness of the estimate, and kernel based
methods are sensitive to the choice of 𝑎.

Voronoi diagram based methods like [7] use the data all around x and the neighbourhood
around x is thus obtained automatically.

2.2. 𝐾 Nearest Neighbours and Natural Neighbours Estimators

The 𝐾 nearest neighbours is a popular method in machine learning, see e.g. [15]. It is
based on calculating the distances between the reference data (it is often called training
data, although no actual training in the kNN method takes place) and the query point x,
at which either the value of a function or a class label is required.

Calculate the pairwise distances 𝑑𝑖 =
⃦⃦
x− x𝑖

⃦⃦
(in some norm), and sort the data set

in the order of increasing 𝑑𝑖. There are many works dedicated to the choice of such a
norm, see, e.g. [15, 16], which is a very hard and context dependent problem. In this

study we assume it is the Euclidean norm. Then approximate 𝑓(x) by 𝑦 =
𝑘∑︀

𝑖=1

𝑤𝑖𝑓
(︀
x𝑖
)︀
,

where the weights 𝑤𝑖 are determined usually by some non-increasing function 𝑤𝑖 = ℎ (𝑑𝑖),
see [16,17]. It was also proposed [18] to use the Induced Ordered Weighted Averaging
functions (Induced OWA) instead of the weighted mean to aggregate the values 𝑓

(︀
x𝑖
)︀

and
to learn w from the data. The Choquet integral was used for the same purpose in [19].

Unlike in function approximation, in the case of density estimation the values 𝑓
(︀
x𝑖
)︀

are not given but need to be estimated from the data set itself. One measure of density
applicable to the kNN approach is the reciprocal of the pairwise distances, which we
present in Section 3.

Another popular method of multivariate approximation is the natural neighbour scheme
by Sibson [12, 20, 21]. The idea of this method is to build an interpolant whose value
at x would depend on a few data points close to x at the same time distributed all
around x, see Figure 1. It favorably contrasts with the nearest neighbour methods in
which only the distance from x matters.
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Figure 1. The nearest neighbours of a query point (left)
versus natural neighbours (right)

In the natural neighbour scheme, the interpolant is a weighted average of the neigh-
bouring data values

𝑓(x) =
𝐽∑︁

𝑗=1

𝑤𝑗 (x) 𝑓
(︀
x𝑗
)︀
,

where the weight 𝑤𝑗(x) is proportional to the volume of the part of Voronoi cell
𝑉 𝑜𝑟(x𝑗) = {z :

⃦⃦
z− x𝑗

⃦⃦
6
⃦⃦
z− x𝑘

⃦⃦
, 𝑘 ≠ 𝑗}, which is cut by the Voronoi cell

𝑉 𝑜𝑟(x) =
{︀
z : ‖z− x‖ 6 ‖z− x𝑘‖

}︀
, when x is added to the Voronoi diagram as one of

the sites. Since Voronoi cell 𝑉 𝑜𝑟(x) borders only a few neighbouring Voronoi cells, only a
few neighbouring data points around x participate in calculation of 𝑓(x) (so called nat-
ural neighbours). More recently variations of Sibson’s method were developed, based
on other rules for calculating weights 𝑤𝑗(x) [21, 22].

Sibson’s interpolant possesses many useful properties, but it is computationally ex-
pensive, as each x requires computation of a new Voronoi diagram having x as one of
the sites. There are methods that allow an update of the Voronoi diagram when x is
added to the list of sites in 2- and 3-variate cases, so that the whole Voronoi diagram
needs not be built for every x. Such methods are very competitive, but we are unaware
of any extension for more than three variables.

2.3. Fuzzy Measures and Discrete Choquet Integral

Aggregation of inputs into a representative output is the subject of aggregation func-
tions [23,24]. The weighted arithmetic mean (WAM) and the median are the two most
commonly employed aggregation functions, and the WAM is used in the traditional kNN
when averaging contributions of the 𝐾 nearest neighbours. These functions are not suit-
able for our purpose as we want to account for input redundancies. The Choquet integral
is a tool for explicitly modelling such interactions.

While the weights of the inputs in the WAM are associated with relative importances
of each input, a discrete fuzzy measure allows one to assign importances to all possible
groups of inputs, and thus offers a much greater flexibility for modeling aggregation.

Definition 1. Let 𝒩 = {1, 2, . . . , 𝑛}. A discrete fuzzy measure is a set function
𝑣 : 2𝒩 → [0, 1] which is monotonic (i.e. 𝑣(𝒜) 6 𝑣(ℬ) whenever 𝒜 ⊂ ℬ) and satisfies
𝑣(∅) = 0 and 𝑣(𝒩 ) = 1.

In Definition 1, a subset 𝒜 ⊆ 𝒩 can be considered as a coalition, so that 𝑣(𝒜) gives us
an idea about the importance or the weight of this coalition. The monotonicity condition
implies that adding new elements to a coalition does not decrease its weight.
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Definition 2. The discrete Choquet integral with respect to a fuzzy measure 𝑣 is given
by

𝐶𝑣(x) =

𝑛∑︁
𝑖=1

𝑥(𝑖)
[︀
𝑣
(︀{︀
𝑗|𝑥𝑗 > 𝑥(𝑖)

}︀)︀
− 𝑣

(︀{︀
𝑗|𝑥𝑗 > 𝑥(𝑖+1)

}︀)︀]︀
, (1)

where x↗ =
(︀
𝑥(1), 𝑥(2), . . . , 𝑥(𝑛)

)︀
is a non-decreasing permutation of the input x, and

𝑥(𝑛+1) = ∞ by convention.

Definition 3. Let 𝑣 be a fuzzy measure. The Möbius transformation of 𝑣 is a function
defined for every 𝒜 ⊆ 𝒩 as

ℳ(𝒜) =
∑︁
ℬ⊆𝒜

(−1)|𝒜∖ℬ|𝑣(ℬ).

The WAM and ordered weighted averaging (OWA) functions are special cases of
Choquet integrals with respect to additive and symmetric fuzzy measures respectively. In
this contribution we are specifically interested in 𝐾-additive fuzzy measures [25, 26].

Definition 4. A fuzzy measure 𝑣 is called 𝐾-additive (1 6 𝐾 6 𝑛) if its Möbius
transformation verifies

ℳ(𝒜) = 0

for any subset 𝒜 with more than 𝐾 elements, |𝒜| > 𝐾, and there exists a subset ℬ with
𝐾 elements such that ℳ(ℬ) ̸= 0.

In this work we are interested in 2-additive fuzzy measures, therefore we assume all
ℳ(𝒜) = 0 for |𝒜| > 2.

When dealing with multiple inputs, it is often the case that these are not independent,
and there is some interaction (positive or negative) among the inputs. To measure such
concepts as the importance of an input and interaction among the inputs we will use the
concepts of Shapley value, which measures the importance of an input 𝑖 in all possible
coalitions, and the interaction index, which measures the interaction of a pair of inputs
𝑖, 𝑗 in all possible coalitions [25, 26].

Definition 5. Let 𝑣 be a fuzzy measure. The Shapley index for every 𝑖 ∈ 𝒩 is

𝜙(𝑖) =
∑︁

𝒜⊆𝒩∖{𝑖}

(𝑛− |𝒜| − 1)!|𝒜|!
𝑛!

[𝑣(𝒜 ∪ {𝑖}) − 𝑣(𝒜)] .

The Shapley value is the vector 𝜙(𝑣) = (𝜙(1), . . . , 𝜙(𝑛)). It satisfies
𝑛∑︀

𝑖=1

𝜙(𝑖) = 1.

Definition 6. Let 𝑣 be a fuzzy measure. The interaction index for every pair 𝑖, 𝑗 ∈ 𝒩
is

𝐼𝑖𝑗 =
∑︁

𝒜⊆𝒩∖{𝑖,𝑗}

(𝑛− |𝒜| − 2)!|𝒜|!
(𝑛− 1)!

× [𝑣(𝒜 ∪ {𝑖, 𝑗}) − 𝑣(𝒜 ∪ {𝑖}) − 𝑣(𝒜 ∪ {𝑗}) + 𝑣(𝒜)] .

The interaction indices verify 𝐼𝑖𝑗 < 0 as soon as 𝑖, 𝑗 are positively correlated (negative
synergy). Similarly 𝐼𝑖𝑗 > 0 for negatively correlated inputs (positive synergy). 𝐼𝑖𝑗 ∈ [−1, 1]
for any pair 𝑖, 𝑗.

A fundamental property of 𝐾-additive fuzzy measures, which justifies their use in
simplifying interactions between the criteria in multiple criteria decision making is the
following [26].
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Proposition 1. Let 𝑣 be a 𝐾-additive fuzzy measure, 1 6 𝐾 6 𝑛. Then
– 𝐼(𝒜) = 0 for every 𝒜 ⊆ 𝒩 such that |𝒜| > 𝐾;
– 𝐼(𝒜) = ℳ(𝒜) for every 𝒜 ⊆ 𝒩 such that |𝒜| = 𝐾.

Thus 𝐾-additive measures acquire an interesting interpretation. These are fuzzy
measures that limit interaction among the criteria to groups of size at most 𝐾. For
instance, for 2-additive fuzzy measures, there are pairwise interactions among the criteria
but no interactions in groups of 3 or more.

The Choquet integral can also be expressed in terms of interaction indices. For
2-additive fuzzy measures we have [27]:

𝐶𝐼(x) =
∑︁
𝐼𝑖𝑗>0

min (𝑥𝑖, 𝑥𝑗) 𝐼𝑖𝑗 +
∑︁
𝐼𝑖𝑗<0

max (𝑥𝑖, 𝑥𝑗) |𝐼𝑖𝑗 |+

+
∑︁

𝑖=1...𝐾

𝑥𝑖

⎛⎝𝜙(𝑖) − 1

2

∑︁
𝑖̸=𝑗

|𝐼𝑖𝑗 |

⎞⎠ , (2)

subject to

𝑣({𝑖}) = 𝜙(𝑖) − 1

2

∑︁
𝑖̸=𝑗

|𝐼𝑖𝑗 | > 0

for all 𝑖 = 1, . . . ,𝐾.

3. Nearest Neighbour Reweighted Graph

As we mentioned in the introduction, this density estimate is based on the kNN graph.
Let us fix a value of 𝐾 ( sufficiently large to include the natural neighbours, of the order
of tens to hundreds). Let us also fix a datum, x𝑗 at which the density estimate will be
computed. Calculate the pairwise distances from x𝑗 to all the other pints in the sample
and select the 𝐾 nearest neighbours.

Let the density estimate at x𝑗 , 𝜌(x𝑗) be given as a weighted sum of the values

𝜌𝑗𝑘 =
1

||x𝑗 − x𝑘||𝑑
,

which are (up to a constant factor) the reciprocals of the volumes of spheres whose
diameters are the segments between x𝑗 and x𝑖.

If we were to use a kNN estimate without reweighting, a large value of 𝐾 would result
in oversmoothing. Our goal is to select the weights in such a way that contributions of
the neighbours on the same side relative to x𝑗 are not double counted. This way only the
natural neighbours all around x𝑗 will contribute to the sum, and that would be equivalent
to using a Delaunay based estimate but without its high complexity when 𝑑 is large. The
question is how to perform such weights redistribution.

Our main tool will be the discrete Choquet integral with respect to a fuzzy measure.

3.1. Construction of the Fuzzy Measure

We now construct such a fuzzy measure based on the proxies for interaction indices,
which we call the redundancy values. In our setting the contributions of two neighbours,
𝑘 and 𝑙, toward point density estimate are redundant if these neighbours lie on the
same side from the query point x𝑗 . The degree of redundancy 𝑅𝑘𝑙 can be expressed
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as a function of the cosine of the angle 𝜃𝑗𝑘𝑙 = ∠x𝑘x𝑗x𝑙, which is easily computed as

cos
(︁
𝜃𝑗𝑘𝑙

)︁
=
(︀
x𝑗 − x𝑘

)︀
·
(︀
x𝑗 − x𝑙

)︀
/
(︀⃦⃦

x𝑗 − x𝑘
⃦⃦ ⃦⃦

x𝑗 − x𝑙
⃦⃦)︀

. In other metric spaces 𝑅𝑘𝑙

can be computed without recurring to the scalar product, as a function of distances only.

Now, take the redundancy values 𝑅𝑘𝑙 = 𝑔
(︁

cos
(︁
𝜃𝑗𝑘𝑙

)︁)︁
, where 𝑔 : [−1, 1] → [0, 1] is some

monotone function chosen as described below. Of course, the redundancy values cannot
be taken as the (negative) interaction indices directly, because the interaction indices
need to satisfy a number of constraints [25, p. 429], namely,

1

2

⎛⎝ ∑︁
𝑗∈𝒩∖𝒜∪{𝑖}

𝐼𝑖𝑗 −
∑︁
𝑙∈𝒜

𝐼𝑖𝑙

⎞⎠ 6 𝜙(𝑖), (3)

for all 𝒜 ⊆ 𝒩 ∖{𝑖}, 𝑖 = 1, . . . ,𝐾, where 𝒩 = {1, . . . ,𝐾} and 𝜙(𝑖) are the Shapley indices.
The constraints are satisfied if and only if 𝑣 is a 2-additive fuzzy measure.

In addition, the Shapley values are also unknown. While it is possible to set up an
optimization problem to select the interaction indices close to the redundancy values, but
subject to the constraints (3), it would be extremely inefficient to solve such a problem
for every datum x𝑗 . Instead we proceed as follows.

Let 𝐶 : [0, 1]𝑟 → [0, 1] be a triangular conorm [23], a monotone increasing sym-
metric associative function with neutral element 0. These functions are often used to
aggregate inputs so that the total contribution does not exceed 1. The Einstein sum
𝐶(𝑥, 𝑦) = 𝑥+ 𝑦 − 𝑥𝑦 and the maximum function are prototypical examples of triangular
conorms.

Let the initial contribution of all the 𝐾 nearest neighbours of x𝑗 be the same
𝑤𝑘 = 1/𝐾, 𝑘 = 1, . . . ,𝐾. Suppose that the neighbour x𝑙 is located further than the in-

puts 𝑘1, 𝑘2, . . . , 𝑘𝑚 and in roughly the same direction, so that 𝜃𝑗𝑘1𝑙
, . . . , 𝜃𝑗𝑘𝑚𝑙 are smaller

than some threshold, like 𝜃 = 𝜋/4, see Figure 2. We want to redistribute the contribution
from the input 𝑙 to 𝑘1, . . . , 𝑘𝑚 proportionally to the redundancy values.

Figure 2. The contribution of inputs inside the cone is downweighted

We take the new weight 𝑢𝑙 = 𝑤𝑙 (1 − 𝐶 (𝑅𝑘1𝑙, . . . , 𝑅𝑘𝑚𝑙)). Note that 𝑢𝑙 > 0 and
becomes 0 only in case of at least one of the redundancy values 𝑅𝑘𝑖𝑙 = 1. The weights



BeliakovGleb On a Method of Multivariate Density Estimate Based on Nearest . . . 65

of the inputs 𝑘𝑖 are incremented by the value

𝑤𝑘𝑖 → 𝑤𝑘𝑖 + 𝑤𝑙
𝑅𝑘𝑖𝑙𝐶 (𝑅𝑘1𝑙, . . . , 𝑅𝑘𝑚𝑙)

𝑚∑︀
𝑡=1

𝑅𝑘𝑡𝑙

.

The weight 𝑤𝑙 is updated 𝑤𝑙 → 𝑢𝑙.
By applying these formulas to every neighbour 𝑙 from the furthest to the nearest, we

downweight the contribution of the furthest and reallocate their weights to the nearer
neighbours as long as those lie in the same direction (in the same spherical cone centered
at x𝑗 of angle of 𝜃).

We can now state that the resulting reweighted sum
𝐾∑︀

𝑘=1

𝑤𝑘𝜌𝑘 corresponds to the

Choquet integral with respect to a 2-additive fuzzy measure whose interaction indices
are negative and correspond to the redundancy values.

Theorem 1. Let the redundancy values 0 6 𝑅𝑘𝑙 = 𝑅𝑙𝑘 6 1, and let the weights be
computed as

𝑤𝑘 =

⎛⎝ 1

𝐾
+
∑︁
𝑡<𝑘

𝑤𝑡𝐶𝑚>𝑡 (𝑅𝑚𝑡)
𝑅𝑘𝑡∑︀

𝑚>𝑡
𝑅𝑚𝑡

⎞⎠ (1 − 𝐶𝑠>𝑘 (𝑅𝑠𝑘)) , (4)

where 𝐶·(. . .) denotes the value of the triangular conorm applied to the arguments that
satisfy the condition expressed in its subindex, analogously to the

∑︀
...

notation. Then

the weighted sum
𝐾∑︀

𝑘=1

𝑤𝑘𝜌𝑘 is equal to the Choquet integral of 𝜌𝑘 with respect to some

2-additive fuzzy measure whose interaction indices 𝐼𝑘𝑙 are negative only when 𝑅𝑘𝑙 > 0.

Proof. Since the values of 𝜌𝑘 are inversely proportional to the distances from x𝑗 to x𝑘,
they are sorted in the order opposite to the order of x𝑘. So we assume the neighbours
are sorted in the order of decreasing distance to x𝑗 , and hence 𝜌𝑘 are sorted in increasing
order.

Consider the sequential process of calculating the weights 𝑤𝑘, 𝑘 = 1, . . . ,𝐾. Before the
process starts all 𝑤𝑘 = 1/𝐾, which are positive and add to one. Take any iteration of
this reweighting process, 𝑘 = 𝑞, and assume that at its start all 𝑤𝑘 > 0 and they add to
one. We show that after that iteration is completed, the updated weights still add to one
and are non-negative. We perform the following two steps

𝑤𝑞 → 𝑤𝑞 (1 − 𝐶𝑘>𝑞 (𝑅𝑘𝑞)) ,

and then for all 𝑡 > 𝑞:

𝑤𝑡 → 𝑤𝑡 + 𝑤𝑞𝐶𝑘>𝑞 (𝑅𝑘𝑞)
𝑅𝑡𝑞∑︀

𝑘>𝑞

𝑅𝑘𝑞
.

The value of
∑︀
𝑘

𝑤𝑘 does not change, as

𝑤𝑞𝐶𝑘>𝑞 (𝑅𝑘𝑞) −
∑︁
𝑡>𝑞

𝑤𝑞𝐶𝑘>𝑞 (𝑅𝑘𝑞)
𝑅𝑡𝑞∑︀

𝑘>𝑞

𝑅𝑘𝑞
= 0,
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and since the value of the triangular conorm 𝐶 is no greater than one, 𝑤𝑞 remains
non-negative. Hence after the above iteration all 𝑤𝑘 are still non-negative and add to one.
By applying mathematical induction, these properties are maintained till the end of the
iterative reweighting process. The formula (4) expresses the end result of the described
reweighting process.

The weighted sum
𝐾∑︀

𝑘=1

𝑤𝑘𝜌𝑘 can be expressed as the Choquet integral

𝐾∑︁
𝑘=1

𝑤𝑘𝜌𝑘 =

𝐾∑︁
𝑘=1

𝜌𝑘 (𝑣 ({𝑗|𝜌𝑗 > 𝜌𝑘}) − 𝑣 ({𝑗|𝜌𝑗 > 𝜌𝑘+1})) = 𝐶𝑣(𝜌) (5)

with respect to some fuzzy measure 𝑣 [23]. There are of course many such possible fuzzy
measures, including additive and 2-additive measures, because we have only specified 𝐾
out of 2𝐾 fuzzy measure coefficients (in the form of 𝑤𝑘). In particular for the two-additive
measure we have expression (2) [27].

In our case we discard the first sum as we only have to account for redundancies (all
𝐼𝑖𝑗 6 0) and hence our measure is submodular. We can therefore determine the values
of 𝑣({𝑖}) and 𝐼𝑖𝑗 by matching the coefficients in (2), (5) with 𝑤𝑘, and setting 𝐼𝑖𝑗 = 0
whenever 𝑅𝑖𝑗 = 0. For this we obtain an underdetermined linear system of equations
which always has at least one positive (in terms of the values 𝑣({𝑖})) solution. Furthermore
we can set up a linear programming problem to maximize the values 𝑣({𝑖}) (in terms
of their sum or their minimum) subject to matching (2), (5) with 𝑤𝑘, and the selected
𝐼𝑖𝑗 6 0 which always has a feasible solution (one of which is 𝑣({𝑖}) = 𝑤𝑖 and all 𝐼𝑖𝑗 = 0).�

So for the purposes of averaging local density values over the natural neighbours of x𝑗

we fix 𝐾, triangular conorm 𝐶 and a way of calculating the redundancy coefficients (from

the cosines of the angles 𝜃𝑗𝑘𝑙), and then apply the iterative reweighting process expressed
in (4) to calculate the density estimate 𝜌𝑗 as the Choquet integral with respect to some
submodular 2-additive fuzzy measure. In our experiments we used

𝑅𝑘𝑙 = max

(︂
0,

(︂
2 cos

(︁
𝜃𝑗𝑘𝑙

)︁2
− 1

)︂)︂
for the threshold 𝜃 = 𝜋/4, and a modified version of this formula for other thresholds
as described in the next section.

Three features of the reweighting method can be highlighted. Firstly, this method is
equivariant to data translation, rotation and scaling (this property is expected from reliable
estimators of density, mode and location). The reason is that the pairwise distances and
angles used in calculations are not affected under these linear transformations. Secondly,
the computational complexity of the presented algorithm is 𝑂(𝑑𝑛2 + 𝑑𝑛𝐾2), based on
the number of distance and angle calculations. Hence it will have performance gains over
other natural neighbours schemata for larger dimensions, notably for 𝑑 > 8. Thirdly,
this method is fully parallelisable and also suitable for SIMD architectures like Graphics
Processing Units (GPUs). Therefore quadratic complexity in 𝑛 seems not to be much
of an issue for 𝑛 6 106.

3.2. Selection of the Threshold 𝜃

We now discuss a method for choosing an appropriate value of the threshold 𝜃 consistent
across different dimensions 𝑑. If we choose 𝜃 = 𝜋/2, then the cone in which the data is
assumed to be redundant becomes half-space in any dimension, so half of the nearest
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neighbours of the point x𝑘 are expected to be located in that half-space (assuming a
locally uniform distribution). That may look too broad a choice, and one may select the
redundant neighbours in a narrower cone, for example, choosing 𝜃 = 𝜋/4, see Figure 2.
In the case of two-dimensional data such a cone will contain roughly a quarter of the
nearest neighbours.

The difficulty is that when the dimension 𝑑 increases, the probability that a near
neighbour of x𝑘 falls into such a cone of angle 𝜃 decreases. This is due to the fact that in
higher dimensions the volume of a spherical cone of angle 𝜃 < 𝜋/2 decreases compared to
the volume of the ball. Therefore, in order for a spherical cone to contain approximately
the same proportion of the near neighbours of a point across different dimensions we need
to select the threshold 𝜃(𝑑) as a function of the dimension of the space.

Let us consider the ratio of the volume of the intersection of a spherical cone with the
ball of radius 𝑅 to the volume of the ball Vol𝑐(𝑑)/Vol𝑠(𝑑), the ratio we want to keep
constant. With no loss of generality we can set 𝑅 = 1.

It is known that

Vol𝑠(𝑑) = 𝐶𝑑𝑅
𝑑,

where the constant 𝐶𝑑 = 𝜋𝑑/2/Γ(1 + 𝑑/2) depends only on the dimension 𝑑. Γ is the
standard gamma-function.

The spherical cone, which is the intersection of a cone 𝐶 with the ball centered at the
vertex of the cone can be represented as the union of two parts, the spherical cap (a
non-empty intersection of a ball with a half-plane) and the intersection of the cone with
the complement of the mentioned half-space, which we call the base cone 𝐵, see Figure 3.

Figure 3. Three-dimensional spherical cone

It is also known that the volume of the spherical cap is given by [28]

Volcap(𝑑) =
1

2
𝐶𝑑𝑅

𝑑𝐼(2𝑅ℎ−ℎ2)/𝑅2

(︂
𝑑+ 1

2
,

1

2

)︂
,

where 𝐼𝑦(𝑎, 𝑏) is the regularized incomplete beta function, and ℎ 6 𝑅 is the height of
the cap.
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Further, the volume of the base cone of height 𝐻 and base radius 𝑟 is given by

Volbase(𝑑) =
𝐻𝑟𝑑−1𝐶𝑑−1

𝑑
,

where 𝐻 = 𝑅 − ℎ and 𝑟2 = 𝑅2 − 𝐻2. Therefore, assuming 𝑅 = 1 and expressing
2ℎ− ℎ2 = (1 −𝐻)(2 − (1 −𝐻)) =

(︀
1 −𝐻2

)︀
, the volume of the spherical cone is

Vol𝑐(𝑑) =
1

2
𝐶𝑑𝐼(1−𝐻2)

(︂
𝑑+ 1

2
,

1

2

)︂
+
𝐻
(︀
1 −𝐻2

)︀ 𝑑−1
2 𝐶𝑑−1

𝑑
.

Now, let us fix the desired fraction of the volume of the ball 𝑡 = Vol𝑐(𝑑)/Vol𝑠(𝑑), for
example 𝑡 = 1

4 . Then we solve for 𝐻 the equation

1

2
𝐼(1−𝐻2)

(︂
𝑑+ 1

2
,

1

2

)︂
+
𝐶𝑑−1

𝐶𝑑

𝐻
(︀
1 −𝐻2

)︀ 𝑑−1
2

𝑑
= 𝑡.

From 𝐻 = cos
(︀
𝜃(𝑑)

)︀
we find the desired threshold 𝜃(𝑑). The graph of cos

(︀
𝜃(𝑑)

)︀
is presented on Figure 4. As expected, the first two values are cos

(︀
𝜃(2)

)︀
= 1/

√
2 and

cos
(︀
𝜃(3)

)︀
= 1/2 which correspond to 𝜃(2) = 𝜋/4 and 𝜃(3) = 𝜋/3 respectively, but no closed

form expression for the other values was found, although some simplifications using the
relations between the gamma and beta functions can be made. Interestingly, the computed
values are very well approximated by the function 𝑔(𝑑) = 1.2 − 0.839 tan−1(log(𝑑)), and
this formula can be used for selecting a suitable value for the cosine of the threshold. The
coefficients in the formula for 𝑔 were obtained by the standard least squares regression
with the approximation error RMSE= 0.004.

Figure 4. The graph of the values of the threshold as a function of the dimension
(𝑑, cos

(︀
𝜃(𝑑)

)︀
) and its approximating function 𝑔

4. Numerical Illustration

In order to show the advantages of the proposed method we will use highly structured
data in R𝑑 coming from a lower dimensional manifold. The reason is that if the data
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are sampled from some standard test distribution, like a mixture of multivariate normals
with nearly equal 𝜎, the nearest neighbours of a point are distributed all around that
point, and thus will overlap significantly with the set of natural neighbours we aim at
identifying. In this case the proposed method shows quite similar results as the standard
kNN and kernel estimates, provided that the value of 𝐾 or the bandwidth are chosen
appropriately to avoid oversmoothing.

It is for structured data that we expect significant benefits, i.e., when the nearest
neighbours significantly differ from the natural neighbours. Furthermore, it turns out
that this method is not sensitive to the choice of 𝐾, as contributions from the neighbours
which are located beyond closer neighbours in the same direction are automatically
downweighted.

Compared to Delaunay tessellation based methods, we expect to obtain computational
advantages for higher dimensions. But for the purposes of illustration we limit ourselves
to two-dimensional pictures. A detailed computational benchmarking is a subject for
a followup paper.

Figure 5 presents a sample generated from a mixture (in equal proportions) of
three products of normal distributions with parameters (𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦) taken as
(0.13, 0.4, 0.08, 0.001), (0.3, 0.3, 0.002, 0.8) and (0.25, 0.4, 0.025, 0.025). Notice that the
sample from the first distribution is practically located on a horizontal line, and because
of the second component of the mixture spread in the other direction, standardization of
the data does not alleviate this. The simulated mixture has three local modes at the cen-
tres of the above normal distributions, with the highest mode at (0.13, 0.4) (notice small
values of 𝜎𝑥, 𝜎𝑦 for this component). The colour intensity of the data points in Figure 5 re-
flects the computed density at that point. The main mode of this mixture is at (0.13, 0.4)
and is significantly more pronounced than the two other modes. The sample size is 1000.

Figure 5. For this structured data sample the reweighted kNN shows advantages
over other estimates which fail to identify the mode correctly

The reweighted kNN estimate (with 𝐾 = 150, which is quite large) correctly identifies
the regions of high density and points correctly to the mode. In contrast, the standard kNN
with that value of 𝐾 oversmoothens the estimate and incorrectly identifies the mode as
that of the second component of the mixture. Other (smaller) values of 𝐾 in the standard
kNN incorrectly position the mode around (0.25, 0.4). In fact, a careful manual adjustment
to the value of 𝐾 between 10 and 15 yields a better estimate of the mode at (0.2, 0.4),
but makes the estimate more “spiky” and overestimates the density at other places.
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5. Conclusion

We have presented a multivariate density estimation method which calculates the local
data density from the averaged distance to the natural neighbours of a point x, the
nearest neighbours distributed all around x. The natural neighbours offer advantages
over the standard kNN and kernel density estimates for structured data, for which the
nearest neighbours could be distributed from one side of x, thus introducing a bias
into the estimate. However, the methods based on Voronoi and Delaunay tessellations,
which compute the natural neighbours, suffer from high computational cost even for
moderate dimension 𝑑 > 5.

To alleviate prohibitive computational cost for higher dimensions we proposed a
reweighting scheme, in which the contributions from a larger number of the nearest
neighbours are reweighted based on their redundancy values, measured through the
cosines of the angles these neighbours are visible from the point x. These redundancy
values serve as proxies for the interaction indices of a 2-additive fuzzy measure, with
respect to which the pairwise distances are averaged by using the discrete Choquet integral.
This way the contribution of the neighbours in the same direction as some of the nearer
neighbours are discounted, and eventually only the contributions from the neighbours
which all lie in distinct directions are accounted for. It is shown how redundancy values
should be computed from the cosines of the angles in the multivariate setting according to
the dimension 𝑑. The computational complexity of the proposed method is quadratic in
the number of data 𝑛 (same as the complexity of the kNN and kernel density estimates),
and the method is fully parallelisable. Besides the kNN, the reweighting scheme can be
used in conjunction with the kernel density estimates, which will be studied in the future.

We foresee applications of the proposed technique in density based clustering, mode
estimation, image segmentation, anomaly detection and other areas of data analytics.
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Об одном методе оценки многомерной плотности на основе
ближайших соседей

Глеб Беляков

Кафедра вычислительных технологий
Университет Дикин

Бурвуд хайвей 221, Бурвуд 3125, Австралия

Представлен метод оценки многомерной плотности, основанный на взвешенном мето-
де ближайших соседей и имитирующий метод естественных соседей. Оценка многомерной
плотности важна в машинном обучении, астрономии, биологии, физике и эконометрике.
Строится 2-аддитивная нечёткая мера на основе аппроксимации индексов парных взаимо-
действий. Соседи, лежащие примерно в одном направлении, рассматриваются как излишние,
и вклад дальнего соседа передаётся ближнему соседу. Расчёт локальной оценки плотности
осуществляется с помощью дискретного интеграла Шоке таким образом, что учитывается
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вклад соседей, расположенных со всех сторон точки, где производятся вычисления. Од-
нако вклад соседей, расположенных с одной и той же стороны, занижается с помощью
выбора подходящей нечёткой меры. Таким образом вычисляется приближение к множеству
естественных соседей Сибсона. Этот метод значительно снижает вычислительную нагруз-
ку методов на базе естественных соседей, которые лежат на основе тесселяции Делоне, в
высокой размерности, для которых вычислительная сложность растёт как экспонента раз-
мерности. Описанный метод подходит для оценки плотности структурированных данных
(возможно, лежащих на многообразии более низкой размерности), так как в этом случае
ближайшие соседи могут значительно отличаться от естественных соседей.

Ключевые слова: оценка плотности, метод ближайших соседей, интеграл Шоке, нечёт-
кая мера, метод естественных соседей
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