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Stochastic realization of the wave function in quantum mechanics, with the inclusion of
soliton representation of extended particles, is discussed. Entangled solitons construction
being introduced in the nonlinear spinor field model, the Einstein–Podolsky–Rosen (EPR)
spin correlation is calculated and shown to coincide with the quantum mechanical one for
the 1/2–spin particles.
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1. Introduction. Wave–particle dualism and
solitons

As a first motivation for introducing stochastic representation of the wave function
let us consider the de Broglie plane wave

ψ = Ae−ikx = Ae−iωt+i(kr) (1)

for a free particle with the energy ω, momentum k, and mass m, when the relativistic
relation

k2 = ω2 − k2 = m2 (2)
holds (in natural units ~ = c = 1).

Suppose, following L. de Broglie [1] and A. Einstein [2], that the structure of
the particle is described by a regular bounded function u(t, r), which is supposed to
satisfy some nonlinear equation with the Klein–Gordon linear part. Let `0 = 1/m be
the characteristic size of the soliton solution u(t, r) moving with the velocity v = k/ω.

Now it is worth-while to underline the remarkable fact behind this research [3],
namely, the possibility to represent the de Broglie wave (1) as the sum of solitons
located at nodes of a cubic lattice with the spacing a� `0:

Ae−ikx =
∑
d

u(t, r + d), (3)

where d marks the positions of lattice nodes. To show the validity of (3) one can take
into account the asymptotic behavior of the soliton in its tail region:

u(x) =
∫

d4k e−ikxg(k)δ(k2 −m2) (4)

and then use the well-known formula∑
d

ei(kd) =
(

2π
a

)3

δ(k), (5)
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implying that

A =
(

2π
a

)3 g(m)
2m

.

The formula (3) gives a simple illustration of the wave–particle dualism, showing that
the de Broglie wave characterizes the assemblage of particles–solitons.

2. D. Bohm’s principle of nonlinear resonance and
its gravitational mechanism

As a point of departure we consider the following problem posed by D. Bohm.
Many years ago he discussed in his book [4] the possible relation between the wave–
particle dualism in quantum mechanics and nonlinearity of fundamental equations in
future theory of elementary particles. To represent the line of D. Bohm’s thought,
let us consider in Minkowsky space–time a simple scalar field model given by the
Lagrangian density

L = ∂iφ
∗∂jφ η

ij − (mc/~)2
φ∗φ+ F (φ∗φ) . (6)

Here φ designates complex scalar field, i, j = 0, 1, 2, 3; ηij = diag(1,−1,−1,−1),
and the nonlinear function F (s) behaves at s → 0 as sn, n > 1, to guarantee the
existence of particle-like solutions to the corresponding field equations, that is de-
scribing localized regular configurations possessing finite energy. In particular, the
choice F (s) = g s3/2, g > 0, in (6) corresponds to the well-known Synge model [5],
which is popular in nuclear physics and admits stationary radial solutions of the form

φ0 = u(r) exp(−iωt), r = |r| . (7)

The radial function u(r) in (7) is regular and exponentially decreases at space
infinity, thus implying the finiteness of the energy

E =
∫

d3xT 0
0 (φ0), (8)

where T ij stands for the energy–momentum tensor of the field model in question.
Moreover, it can be shown that the unnodal configuration, for which u(r) ¿0, turns
out to be stable in the Liapunov’s sense, if the charge of the configuration is fixed [6].
This fact implies the existence of slightly perturbed soliton solutions similar to (7):

φ = φ0 + ξ(t, r). (9)

It should be stressed that the perturbation ξ in (9) appears to be small with
respect to φ0 in the region of soliton’s localization only, though in the “tail” region of
the soliton (i.e. far from its center) the function φ0 is small, so one can put φ = ξ.

D. Bohm posed the following question: Does there exist any nonlinear field model,
for which the asymptotic behavior of the perturbed soliton solution, at large distances
from the soliton’s center, would represent the oscillations with the characteristic fre-
quency ω = E/~? In other words, for the model in question the principal Fourier
amplitude of the field φ ≈ ξ at large distances r → ∞ should correspond to the
frequency ω related to the soliton’s energy (8) via the Planck–de Broglie formula

E = ~ω. (10)

This property will be called the Bohm’s principle of nonlinear resonance.
As one can see from (6), the field equation at space infinity, where φ→ 0, reduces

to the linear Klein–Gordon equation(
�− (mc/~)2

)
φ = 0. (11)
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Therefore, the relation (10) can be satisfied for the solitons with the single energy
E = mc2, determined by the fixed mass m represented in (6). Thus, we conclude
that the universality of the Planck–de Broglie relation (10) appears to be broken for
the model (6), that forces us to modify the latter one. Taking into account that the
frequency in (10) is determined by the mass of the localized system, it seems natural
to use in the new modified model the proper gravitational field of the soliton–particle,
in view of the fact that its asymptotic behavior at space infinity is also determined by
the mass of the system. Finally, it is suggested to search for the answer to the Bohm’s
question in the self-consistent gravitational theory [7, 8].

The new model will be described by the Lagrangian density L = Lg + Lm, where
Lg = c4R/(16πG) corresponds to the Einstein gravitational theory and Lm is written
as follows:

Lm = ∂iφ
∗∂jφ g

ij − I(gij)φ∗φ+ F (φ∗φ). (12)

The crucial point in this scheme is the constructing of the invariant I(gij), which
should depend on the metric tensor gij of the Riemannian space–time in such a manner
that in the vicinity of the soliton with a mass m the following relation took place:

lim
r→∞

I(gij) = (mc/~)2. (13)

It can be easily seen that due to (13) one finds at space infinity the universal
equation (11), which is valid for the soliton configuration with an arbitrary mass m.

To show the existence of the invariant I with the property (13), one could construct
it through the Riemann curvature tensor Rijkl and its covariant derivatives Rijkl;n:

I = (I4
1/I

3
2 )c6~−2G−2, (14)

where G stands for the Newton gravitational constant and invariants I1, I2 have the
form:

I1 = RijklR
ijkl/48, I2 = −Rijkl;nRijkl;n/432.

Calculating Rijkl and invariants I1, I2 via the Schwarzschild metric at large dis-
tance r from the soliton’s center, that seems reasonable for the island-like systems,
one finds

I1 = G2m2/(c4r6) ; I2 = G2m2/(c4r8). (15)

Thus, the relations (14) and (15) imply the desirable property (13) and the validity
of the Bohm’s principle of nonlinear resonance in its gravitational realization, that
is the Planck–de Broglie wave–particle dualism relation (10) holds for all massive
particles described by regular localized field configurations.

Now the next problem arises: to prove the consistency of the Einstein–de
Broglie solitonian scheme, complemented by the Bohm’s nonlinear resonance prin-
ciple, with the main axioms of quantum mechanics. This problem was discussed in
the works [9, 10] and it was shown that in the limit of point-like particles the main
quantum postulates could be retained. In particular, it turned out that on the base of
solitonian field configurations one could build the analog of the probability amplitude
(wave function) and the mean values of physical observables could be calculated as
scalar products in a suitable Hilbert space with the stochastic properties.

3. Random Hilbert space

The shortest way to get the stochastic representation of quantum mechanics is
modify the formula (3). This can be easily performed if one admits that the locations
of solitons’ centers are not regular nodes of the cubic lattice but some randomly chosen
points. To realize this prescription, suppose that a field φ describes n particles–solitons
and has the form

φ(t, r) =
n∑
k=1

φ(k)(t, r), (16)
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where
suppφ(k) ∩ suppφ(k′) = 0, k 6= k′,

and the same for the conjugate momenta

π(t, r) = ∂L/∂φt =
n∑
k=1

π(k)(t, r), φt = ∂φ/∂t.

Let us define the auxiliary functions

ϕ(k)(t, r) =
1√
2

(νkφ(k) + iπ(k)/νk) (17)

with the constants νk satisfying the normalization condition

~ =
∫

d3x |ϕ(k)|2. (18)

Now we define the analog of the wave function in the configurational space R3n 3 x =
{r1, . . . , rn} as

ΨN (t, r1, . . . , rn) = (~nN)−1/2
N∑
j=1

n∏
k=1

ϕ
(k)
j (t, rk), (19)

where N � 1 stands for the number of trials (observations) and ϕ(k)
j is the one-particle

function (7) for the j th trial.
Now we intend to show that the quantity

ρN =
1

(∆∨)n

∫
(∆∨)n⊂R3n

d3nx |ΨN |2 ,

where ∆∨ is the elementary volume which is supposed to be much greater than the
proper volume of the particle `03 = ∨0 � ∆∨, plays the role of coordinate probability
density. To this end let us calculate the following integral:

(∆∨)n ρN ≡
∫

(∆∨)n

d3nx |ΨN |2 = (~nN)−1

 N∑
i=1

aii +
N∑

i6=j=1

aij

 ,
where the denotation is used

aij = 1
2

n∏
k=1

∫
∆∨

d3x
(
ϕ
∗(k)
i ϕ

(k)
j + ϕ

∗(k)
j ϕ

(k)
i

)
.

Taking into account (19), one gets

(∆∨)n ρN = (~nN)−1 (~n∆N + S) , S =
∑
i6=j

aij , (20)

with ∆N standing for the number of trials for which the centers of particles–solitons
were located in (∆∨)n.

It is worth-while to remark that due to independence of trials and arbitrariness of
initial data and, in particular, of the phases of the functions ϕ(k)

i , one can consider
the entities aij for i 6= j as independent random variables with zero mean values. This
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fact permits to use the Chebyshev’s inequality [11] for estimating the probability of
the events, for which |S| surpasses ~n∆N :

P (|S| > ~n∆N) 6 (~n∆N)−2 〈
S2
〉
. (21)

On the other hand, in view of trials’ independence one gets〈
S2
〉

=
∑
i6=j

〈
a2
ij

〉
. (22)

Now one can take into account that the wave packets ϕ(k)
i are effectively overlapped

if their centers belong to the proper volume domain ∨0. This property permits to
deduce from (19) and (22) the estimate

〈
S2
〉
6 αn~2n ∆N

(∆∨)n
∨0

n∆N, (23)

where α ∼ 1 is the “packing” factor for the nearest neighbors. Inserting (23) into (22),
one finds the following estimate:

P (|S| > ~n∆N) < (α ∨0 /∆∨)n � 1. (24)

Applying the estimate (24) to (20), one can state that with the probability close
to unity the following relation holds:

(∆∨)n ρN = ∆N/N, (25)

signifying that the construction (19) plays the role of the probability amplitude for the
coordinate distribution of solitons’ centers, with ρN in (25) being the corresponding
probability density.

Now let us consider the measuring procedure for some observable A corresponding,
due to E. Noether’s theorem, to the symmetry group generator M̂A. For example, the
momentum P is related with the generator of space translation M̂P = − i∇, the
angular momentum L is related with the generator of space rotation M̂L = J and so
on. As a result one can represent the classical observable Aj for the j–th trial in the
form

Aj =
∫

d3xπj iM̂Aφj =
n∑
k=1

∫
d3xϕ

∗(k)
j M̂

(k)
A ϕ

(k)
j .

The corresponding mean value is

E(A) ≡ 1
N

N∑
j=1

Aj =
1
N

N∑
j=1

n∑
k=1

∫
d3xϕ

∗(k)
j M̂

(k)
A ϕ

(k)
j =

=
∫

d3nxΨ∗N ÂΨN +O

( ∨0

∆∨

)
, (26)

where the Hermitian operator Â reads

Â =
n∑
k=1

~M̂ (k)
A . (27)

Thus, up to the terms of the order ∨0/∆∨ � 1, we obtain the standard quantum
mechanical rule (26) for the calculation of mean values [9, 12].

It is interesting to underline that the solitonian scheme in question contains also
the well-known spin–statistics correlation [8]. Namely, if ϕ(k)

j is transformed under
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the rotation by irreducible representation D(J) of SO(3), with the weight J , then
the transposition of two identical extended particles is equivalent to the relative 2π–
rotation of ϕ(k)

j , that gives the multiplication factor (−1)2J in ΨN . To show this

property, suppose that our particles are identical, i.e. their profiles ϕ(k)
j may differ

in phases only. Therefore, the transposition of the particles with the centers at r1
and r2 means the π–rotation of 2–particle configuration around the median axis of
the central vector line r1 − r2. However, due to extended character of the particles,
to restore the initial configuration, one should perform additional proper π–rotations
of the particles. The latter operation being equivalent to the relative 2π–rotation
of particles, one concludes that it results in aforementioned multiplication of ΨN by
(−1)2J . Under the natural supposition that the weight J is related with the spin
of particles–solitons, one infers that the many–particles wave function (19) should be
symmetrical under the transposition of the two identical particles if the spin is integer,
but antisymmetrical if the spin is half-integer (the Pauli principle).

Thus, we conclude that in the solitonian scheme the spin–statistics correlation
stems from the extended character of particles–solitons. However, the particles in
quantum mechanics being considered as point-like ones, it appears inevitable to include
the transpositional symmetry of the wave function as the first principle (cf. Hartree–
Fock receipt for Fermions).

It can be also proved that ΨN up to the terms of order ∨0/∆∨ satisfies the standard
Schrödinger equation [8]. To this end it is worth-while to underline that, in accordance
with the Bohm’s nonlinear resonance principle (13), in the vicinity of the k–th particle
the Klein–Gordon equation (11) with the particle’s mass mk is satisfied. However, at
large distances the same equation (11) is valid but with the mass M , equal to the total
mass of the system. In view of this fact, it is useful to divide the field configuration
ϕ(k) into two parts as follows:

ϕ(k) = ϕ
(k)
0 + ϕ(k)

∞ , (28)

where ϕ(k)
0 describes the nearest structure (highly decreasing function) and ϕ

(k)
∞ de-

scribes the far one (slightly decreasing function). According to (11), in the proper
reference frames of the k–th particle and of the total system respectively, one finds
the following time behavior of these functions:

ϕ
(k)
0 ∼ e−imkc

2t/~, ϕ(k)
∞ ∼ e−iMc2t/~. (29)

Inserting (28) in (19), one gets for rj →∞

n∏
k=1

ϕ(k) =
n∏
k=1

(
ϕ

(k)
0 + ϕ(k)

∞

)
≈ ϕ(k)

∞
∏
k 6=j

ϕ
(k)
0 . (30)

In view of (29) and (30) one concludes that at rj →∞

ΨN ∼ e−iMc2t/~. (31)

On the other hand, given the field Hamiltonian H[φ, π] of the system, one can write
the field equations in the canonical form, that results in the evolution law of ϕ(k):

i∂tϕ(k) = δH/δϕ∗(k). (32)

Therefore, combining (19) and (32), one gets the evolution equation for ΨN :

i~ ∂tΨN = ~
n∑
k=1

N∑
j=1

δH

δϕ
∗(k)
j

∂ΨN

∂ϕ
(k)
j

≡ ĤΨN , (33)
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which has the standard quantum mechanical form with some generalized Hamilton
operator Ĥ. As follows from (31), the operator Ĥ has the sense of the total energy
operator of the system in question. Taking into account the estimate (24), one can
ascertain that with the probability close to the unity the equation (33) is equivalent
to some linear evolution equation for the probability amplitude [9].

Now we prove that in the nonrelativistic limit this equation should coincide with
the Schrödinger equation for the system of n particles. In fact, according to (11) in
the vicinity of the k–th particle the following equation holds:

�ϕ(k) = (mkc/~)2ϕ(k) + Uk(φ, π),

which after the substitution

ϕ(k) = u(k)e−imkc
2t/~

reduces, in the nonrelativistic limit, to the equation

i~ ∂tu(k) ≈ − ~2

2mk
∆ku

(k) + U ′k,

where U ′k stands for an effective interaction potential. Therefore, the function

ψN = ΨN exp

(
n∑
k=1

imkc
2t/~

)

satisfies the standard n–particle Schrödinger equation.
Now it is worth-while to discuss the evidence of wave properties of particles in

solitonian scheme. To verify the fact that solitons can really possess wave properties,
the gedanken diffraction experiment with individual electrons–solitons was realized.
Solitons with some velocity were dropped into a rectilinear slit, cut in the impermeable
screen, and the transverse momentum was calculated which they gained while passing
the slit, with the width of the latter significantly exceeded the size of the soliton. As
a result, the picture of distribution of the centers of scattered solitons was restored
on the registration screen, by considering their initial distribution to be uniform over
the transverse coordinate. It was clarified that though the center of each soliton fell
into a definite place of the registration screen (depending on the initial soliton profile
and the point of crossing the plane of the slit by the soliton’s center), the statistical
picture in many ways was similar to the well-known diffraction distribution in optics,
i.e. the Fresnel’s picture at short distances from the slit and the Fraunhofer’s one at
large distances [13,14].

Various aspects of the fulfillment of the quantum mechanics correspondence princi-
ple for the Einstein–de Broglie’s solitonian model were discussed in the works [8,9,12].
In these papers it was shown that in the framework of the solitonian model all quantum
postulates were regained in the limit of point particles, so that from the physical fields
one can build the amplitude of probability and the average can be calculated as a scalar
product in the Hilbert space by introducing the corresponding quantum operators for
observables. The fundamental role of the gravitational field in the de Broglie–Einstein
solitonian scheme was discussed in [8,15]. The solitonian model of the hydrogen atom
was developed in [10,16]. The dynamics of solitons in external fields was discussed in
the paper [17].

As a result we obtain the stochastic realization (19) of the wave function ΨN which
can be considered as an element of the random Hilbert space Hrand with the scalar
product

(ψ1, ψ2) = M(ψ∗1ψ2), (34)

with M standing for the expectation value. As a rude simplification one can admit
that the averaging in (34) is taken over random characteristics of particles–solitons,
such as their positions, velocities, phases, and so on. It is important to underline once
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more that the correspondence with the standard quantum mechanics is retained only
in the point–particle limit (∆∨ � ∨0) for N →∞. To show this [9,12], one can apply
the central limit theorem stating that for N →∞ the wave function ΨN (t,x) behaves
as the Gaussian random field with the variance

σ2 = ρ(t,x), x ∈ R3n, (35)

where ρ(t,x) stands for the probability density (partition function) of solitons’ centers
in R3n.

Random Hilbert spaces being widely exploited in mathematical statistics [18], for
quantum applications they were first used by N. Wiener in [19]. To illustrate the line of
Wiener’s argument, we recall the general scheme of introducing various representations
in quantum mechanics.

Let |ψ〉 be a state vector in the Hilbert space H and Â be a self-conjugate operator
with the spectrum σ(Â). Then the a–representation is given by the wave function

ψ(a) = 〈a|ψ〉,

where
Â|a〉 = a|a〉, a ∈ σ(Â).

In particular, the famous Schrödinger coordinate q–representation is given by the wave
function

ψ(q) = 〈q|ψ〉 =
∑
n

〈q|n〉〈n|ψ〉, (36)

with |n〉 being some complete set of state vectors in H.
Wiener considered the real Brownian process x(s, α) in the interval [0, 1] 3 s, where

α ∈ [0, 1] is the generalized number of the Brownian trajectory and the correlation
reads

1∫
0

dαx(s, α)x(s′, α) = min(s, s′). (37)

To obtain the quantum mechanical description, Wiener defined the complex Brownian
process

z(s|α, β) =
1√
2

[x(s, α) + i y(s, β)] ; α, β ∈ [0, 1] , (38)

and using the natural mapping R3 → [0, 1], for the particle in R3, constructed the
stochastic representation of the wave function along similar lines as in (36):

〈α, β|ψ〉 =
∫

s∈[0,1]

dz(s|α, β)ψ(s), (39)

with the obvious unitarity property

1∫
0

ds |ψ(s)|2 =
∫∫

[0,1]2

dα dβ|〈α, β|ψ〉|2

stemming from (37).
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4. Entangled solitons and EPR correlations

In the sequel we shall consider the special case of two–particles configurations
(n = 2), corresponding to the singlet state of two 1/2–spin particles. In quantum
mechanics these states are described by the spin wave function of the form

ψ12 =
1√
2

(|1 ↑〉 ⊗ |2 ↓〉 − |1 ↓〉 ⊗ |2 ↑〉) (40)

and are known as entangled states. The arrows in (40) signify the projections of
spin ±1/2 along some fixed direction. In the case of the electrons in the famous Stern–
Gerlach experiment this direction is determined by that of an external magnetic field.
If one chooses two different Stern–Gerlach devices, with the directions a and b of the
magnetic fields, denoted by the unit vectors a and b respectively, one can measure the
correlation of spins of the two electrons by projecting the spin of the first electron on
a and the second one on b. Quantum mechanics gives for the spin correlation function
the well-known expression

P (a, b) = ψ+
12(σa)⊗ (σb)ψ12, (41)

where σ stands for the vector of Pauli matrices σi, i = 1, 2, 3. Putting (40) into (41),
one easily gets

P (a, b) = −(ab). (42)

The formula (42) characterizes the spin correlation in the Einstein–Podolsky–Rosen
entangled singlet states and is known as the EPR–correlation. As was shown by
J. Bell [20], the correlation (42) can be used as an efficient criterium for distinguishing
the models with the local (point-like) hidden variables from those with the nonlocal
ones. Namely, for the local-hidden-variables theories the EPR–correlation (42) is
broken.

It would be interesting to check the solitonian model, shortly described in the
beforehand points, by applying to it the EPR–correlation criterium. To this end let
us first describe the 1/2–spin particles as solitons in the nonlinear spinor model of
Heisenberg–Ivanenko type considered in the works [21, 22]. The soliton in question is
described by the relativistic 4–spinor field ϕ of stationary type

ϕ =
[
u

v

]
e−iωt, (43)

satisfying the equation (
iγk∂k − `−1

0 + λ(ϕ̄ϕ)
)
ϕ = 0, (44)

where u and v denote 2–spinors, k runs Minkowsky space indices 0, 1, 2, 3; `0 stands for
some characteristic length (the size of the particle–soliton), λ is self-coupling constant,
ϕ̄ ≡ ϕ+γ0, γk are the Dirac matrices. The stationary solution to the equation (44) can
be obtained by separating variables in spherical coordinates r, ϑ, α via the substitution

u =
1√
4π
f(r)

[
1
0

]
, v =

i√
4π
g(r)σr

[
1
0

]
, (45)

where σr = (σr)/r. Inserting (45) into (44), one finds

ω

c
u+ i(σ∇)v − `−1

0 u+
λ

4π
(
f2 − g2

)
u = 0,

ω

c
v + i(σ∇)u− `−1

0 v +
λ

4π
(
f2 − g2

)
v = 0.
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In view of (45) one gets

i(σ∇)v = − 1√
4π

(
g′ +

2
r
g

)[
1
0

]
,

i(σ∇)u = − i√
4π
f ′σr

[
1
0

]
.

Finally, one derives the following ordinary differential equations for the radial func-
tions f(r) and g(r): (

g′ +
2
r
g

)
=
(
ω

c
− `−1

0

)
f +

λ

4π
(
f2 − g2

)
f,

−f ′ =
(
ω

c
+ `−1

0

)
g +

λ

4π
(
f2 − g2

)
g.

As was shown in the papers [21, 22], these equations admit regular solutions, if the
frequency parameter ω belongs to the interval

0 < ω < c/`0. (46)

The behavior of the functions f(r) and g(r) at r → 0 is as follows:

g(r) = C1r, f = C2, f ′ → 0,

where C1, C2 denote some integration constants. The behavior of solutions far from
the center of the soliton, i.e. at r →∞, is given by the relations:

f =
A

r
e−νr, g = −f

′

B
,

where

ν =
(
`−2
0 − ω2/c2

)1/2
, B = `−1

0 + ω/c.

If one chooses the free parameters `0 and λ of the model to satisfy the normalization
condition (similar to (19))

∫
d3xϕ+ϕ =

∞∫
0

dr r2
(
f2 + g2

)
= ~, (47)

then the spin of the soliton reads

S =
∫

d3xϕ+Jϕ =
~
2
ez, (48)

where ez denotes the unit vector along the Z–direction, J stands for the angular
momentum operator

J = −i[r∇] +
1
2
σ ⊗ σ0, (49)

and σ0 is the unit 2× 2–matrix.
Now it is worth-while to show the positiveness of the energy E of the 1/2–spin

soliton. The energy E is given by the expression

E = c

∫
d3x

[
−iϕ+(α∇)ϕ+ `−1

0 ϕ̄ϕ− λ

2
(ϕ̄ϕ)2

]
, (50)
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where α = σ⊗σ1. The positiveness of the functional (50) emerges from the virial iden-
tities characteristic for the model in question. In fact, the equation for the stationary
solution (43) can be derived from the variational principle based on the Lagrangian of
the system

L = −E +
∫

d3xωϕ+ϕ. (51)

Performing the two-parameters scale transformation of the form ϕ(x) → αϕ(βx),
one can derive from (51) and the variational principle δL = 0 the following two virial
identities, which are valid for any regular stationary solution to the field equation (44):∫

d3x
[
i
2
3
ϕ+(α∇)ϕ+

ω

c
ϕ+ϕ− `−1

0 ϕ̄ϕ+
λ

2
(ϕ̄ϕ)2

]
= 0, (52)∫

d3x
[
iϕ+(α∇)ϕ+

ω

c
ϕ+ϕ− `−1

0 ϕ̄ϕ+ λ(ϕ̄ϕ)2
]

= 0. (53)

Using (52) and (53), one can express some sign-changing integrals through those
of definite sign: ∫

d3x
[
−i

1
3
ϕ+(α∇)ϕ

]
=
λ

2

∫
d3x (ϕ̄ϕ)2, (54)∫

d3x
[
`−1
0 ϕ̄ϕ+

λ

2
(ϕ̄ϕ)2

]
=
ω

c

∫
d3xϕ+ϕ. (55)

Using the identities (54) and (55), one can represent the energy (50) of the soliton as
follows:

E = c

∫
d3x

[
`−1
0 ϕ̄ϕ+ λ(ϕ̄ϕ)2

]
= ω

∫
d3xϕ+ϕ = ~ω, (56)

where the normalization condition (47) was taken into account. Thus, one concludes,
in the connection with (46) and (56), that the energy of the stationary spinor soli-
ton (43) in the nonlinear model (44) turns out to be positive. Moreover, one can see
that (56) is equivalent to the Planck–de Broglie wave–particle dualism relation (11).

Now let us construct the two–particles singlet configuration on the base of the
soliton solution (43). First of all, in analogy with (40), one constructs the entangled
solitons configuration endowed with the zero spin:

ϕ12 =
1√
2

[
ϕ↑1 ⊗ ϕ

↓
2 − ϕ

↓
1 ⊗ ϕ

↑
2

]
, (57)

where ϕ↑1 corresponds to (45) with r = r1, and ϕ↓2 emerges from the above solution by
the substitution

r1 → r2,

[
1
0

]
→
[

0
1

]
,

that corresponds to the opposite projection of spin on the Z–axis. In virtue of the or-
thogonality relation for the states with the opposite spin projections, one easily derives
the following normalization condition for the entangled solitons configuration (57):∫

d3x1

∫
d3x2 ϕ

+
12ϕ12 = ~2. (58)

Now it is not difficult to find the expression for the stochastic wave function (20)
for the singlet two–solitons state:

ΨN (t, r1, r2) =
(
~2N

)−1/2
N∑
j=1

ϕ
(j)
12 , (59)
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where ϕ(j)
12 corresponds to the entangled soliton configuration in the j th trial.

Our final step is the calculation of the spin correlation (41) for the singlet two–
soliton state. In the light of the fact that the operator σ in (41) corresponds to the
twice angular momentum operator (49), one should calculate the following expression:

P ′(a,b) = M
∫

d3x1

∫
d3x2 Ψ

+
N2 (J1a)⊗ 2 (J2b)ΨN , (60)

where M stands for the averaging over the random phases of the solitons. Inserting (59)
and (49) into (60), using the independence of trials j 6= j′ and taking into account the
relations:

J+ϕ
↑ = 0, J3ϕ

↑ =
1
2
ϕ↑, J−ϕ

↑ = ϕ↓,

J−ϕ
↓ = 0, J3ϕ

↓ = −1
2
ϕ↓, J+ϕ

↓ = ϕ↑,

where J± = J1 ± iJ2, one easily finds that

P ′(a,b) = −~−2 (ab)

 ∞∫
0

dr r2
(
f2 + g2

)2

= − (ab) . (61)

Comparing the correlations (61) and (42), one remarks their coincidence, that is the
solitonian model satisfies the EPR–correlation criterium.

Conclusion

The main purpose of this paper was to find new arguments in favour of the thought
that the soliton concept advocated by Einstein and de Broglie can give a consistent
description of extended quantum particles. In particular, as a motivation for such a
conclusion, within a framework of nonlinear spinor field model the solitonian image of
1/2–spin particles was used for constructing two–solitons singlet configuration, which
permitted to calculate the spin EPR correlation. Fascinating result of this calculation
was the coincidence of the quantum spin correlation with that in the solitonian scheme.
This latter fact supports the hope that the solitonian scheme has many attractive
features relevant to consistent theory of extended elementary particles. The search for
such a theory was considered by V.V. Kuryshkin as a first task in his mighty scientific
activity.
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УДК 539.12: 530.145

Запутанные солитоны и корреляции
Эйнштейна–Подольского–Розена

Ю. П. Рыбаков

Кафедра теоретической физики
Российский университет дружбы народов

ул. Миклухо–Маклая, 6, Москва, Россия, 117198

Обсуждается стохастическая реализация волновой функции в квантовой механи-
ке на основе солитонного представления протяжённых частиц. Для построения за-
путанных состояний в обобщённой квантовой механике протяжённых частиц исполь-
зуются двухсолитонные конфигурации. Конструкция запутанных солитонов в моде-
ли нелинейного спинорного поля применяется для вычисления спиновой корреляции
Эйнштейна–Подольского–Розена (ЭПР) и показывается, что она совпадает с квантовой
ЭПР–корреляцией для частиц спина 1/2.


