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The problem of existence of Global Half-Geodesic Surface Parameterization is considered. The
problem is well known and it is yet unsolved in general case. It is known that for the twice-
differentiable surfaces it has local solution. At the same time example of paraboloid of revolution
proves that it is not possible in the general case to use local nets in order to construct the
global half- geodesic ones. In order to solve the problem the authors follow the way leading to
the construction of isothermal parameterization for the surfaces with positive first quadratic
form. To this end they deduce partial differential equation for the mappings giving necessary
parameterization.

In the contrast with the case of isothermal parameterization when the equation is Beltrami
equation corresponding to the homogeneous elliptic system this equation is essentially non-linear
one. Besides the new system admits degeneration at the points where the Jacobian of the
solution is equal to zero or infinity. The speed of degeneration strongly affecting properties of
the solutions is also unknown.

In order to surpass these difficulties the authors change the challenge. Instead of the geodesics
covering the whole surface they propose to find the geodesics covering the surface up to the set
of Hausdorff null measure. Using the theory of K-quasiconformal mappings they construct non-
regular generalized solutions of non-linear Beltrami equation that nevertheless detect the necessary
family of the geodesics. The constructed theory permits to study non-classical equilibrium forms
of liquid drops.
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mal mappings, generalized solution, non-linear Beltrami equation, Sobolev spaces, imbedding
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1. Formulation of the problem

Let X = X(&,7), (§,m) € D be a continuously differentiable parametric surface and
w — its first quadratic form

w = Ade? + 2Bdédn + Cdn?. (1)

Let us suppose that the following conditions are satisfied
A>Ag>0, A=AC—-B*>Ay>0. (2)
It is well-known [1] that there exists a homeomorphism z = z({), ¢ = £ + in of the

disk D onto itself reducing the quadratic form w in the isothermal coordinates (z,y) to
the canonical one

w = A, y)(da? + dy?). (3)
The function z = z({) satisfies the following Beltrami equation
A—VA+iB
27(¢) = ———————=2¢(¢). 4
C(g) A+\/Z*ZB C(C) ()

The isothermal coordinates proved to be very useful in various applications, especially
in the theory of minimal surfaces.
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The other canonical representation of the type
w*(u,v) = du® + Hdv? (5)

is also widely known [2].

The parameterization of the surface reducing the first quadratic form to the form (5)
has the name of half-geodesic parameterization.

Locally we can introduce for the surfaces under consideration the coordinates (u,v)
transforming their first quadratic form into the form (5).

Sometimes it is possible (for example for the surfaces of the negative curvature or for
the analytic ones) to get this reduction over the whole surface. For the general case the
problem still stands to be open.

Meanwhile sometimes the global half-geodesic parameterization is also necessary,
especially in the case when the functional giving the Gauss curvature under variation is
required (see for example [3-5]).

The existence of such parameterization is connected with existence of the family of
the geodesics covering the whole surface.

In this article we are going to prove the existence of the family of geodesics without
self-intersections covering the surfaces X we consider almost everywhere. It is sufficient,
for example, for the generalization of the variational problems studied in the articles [3-5]
to the case of the surfaces lacking the axial symmetry.

In order to fulfill this task we will proceed as follows. As in the case of isothermal
parameterization we deduce Beltrami differential equation for the transformations resolving
the problem of the existence of half-geodesic parameterization. After this using the method
of successive approximations we prove the existence of the solutions of the equation.
Finally, we prove that almost all level lines of the imaginary parts of the solution the
equation for the inverse transformation are geodesics covering almost all the surface X.

The main difficulty we encounter on this way lies in non-linear nature of Beltrami
equation we get in our case. Besides, it degenerates at the points where the Jacobian of
the transformation turns to be zero or infinite.

The instrument of changing the variables turns not to be perfect but still it permits
us to detect almost all the geodesics of the surface and prove that they cover it without
self-intersection up to the set of null Hausdorff measure.

2. Basic equations
It is easy to prove the following theorem.

Theorem 1. Let X = X (z,y) be continuously differentiable parametric surface with
the first quadratic form w of the type (3). Let us suppose that there exists a topological
sense preserving transformation w : D — D, w = u + v reducing the form w to the
form w* from formula (5). In this case, the function w satisfies the conjugate nonlinear
Beltrami equation

A(z) — Jw(z)@

Juw(z) +A(z) 7

The inverse function z = z(w), z = x + iy, satisfies the nonlinear Beltrami equation

A(z(w)) Jo(w) — 1
A(z(w)) J.(w) + 1

(6)

wz(z) =

Zw(w). (7)

zg(w) = —

Besides the following equality takes place

H(u,v) = A (2(u,v)) (w% + yg) = A2 (z(u,v)) Jf(w)
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This theorem constitutes the first part of our program.

3. Construction of the solutions of the basic equations

Let us start now with the study of the second part of our program. We will prove
that the solution of the conjugate non-linear Beltrami equation (6) exists. It is clear that
this equation degenerates at the points where the Jacobian of the solution is equal to zero
or infinity. This entails many difficulties as we cannot apply directly the well-developed
theory of quasiconformal mappings with bounded characteristics.

In what follows we restrict our considerations to the twice-differentiable surfaces
symmetrical relatively to a plane P. Besides, we suppose that the intersection of the
surface X with the plane P is also geodesics. We denote by the letter = the class of the
surfaces of this type.

In order to find the needed solution we will use the method of iterations. We divide
this process into two stages.

3.1. First stage

At the first stage the process of the iterations is as following. Firstly, for each number
m € N fixed we construct the sequence of K-quasiconformal mappings satisfying the
following equations

(n+1) AR Ty () 1= m )
w? (mVZ) - Jw(n)(Z) —|—A(Z) 1+ %wz (m,z). (8)

As the first element of the sequence we introduce into equation (8) as Jy,o the

Jacobian of the conformal mapping w® of the unit disk D onto itself normalized by the
correspondence of the three pairs of the boundary points

w'(=1) = -1, ') =p, w'(1)=1, 0<argp<m.

Let
w™ (m, z) = u™ (m, z) + iv'™ (m, 2).

Then the functions w1 (m,z), vtV (m, 2) satisfy the following system of the
equations equivalent to the equation (8),

1 -1 n+1 1 n+1
(m + A Ty (m, z)) ul" Y (m, 2) = <1 + EJ’U(”) (m, z)) ”2(; )(m, 2),

1 1
(m + Aile(n) (ma Z)) ug(/nJrl)(m? Z) = (1 + %Ailjw(n) (mv Z)) va(ﬁnJrl) (mv Z) (9)

Let now z("t1 = z(n+1) 4 4y (n+1) he the mapping inverse to the mapping w1 . We
can easily prove that it satisfies the following non-linear Beltrami equation

m,w) = — m o (1) (1, w).

Tutor (m 200 () + A (200 (w)) 15 1

L) Ty (m, 2D (w) = A (D) 1 -

The functions ("1, y(+1) gatisfy the equations

L J oo (m, 2D) 4 A (Z<n+1>(w))x(n+1) -
']w(") (m’ Z(n+1)) + %A (z(nJrl) ('UJ)) u Yy

(mvw) = )(ma w),
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iJwW) (m, z(n+1)) + A (Z(n+1)(w))
oo O 0T) 4 LA (0 a)

The following theorem concerns the properties of the successive approximations and their
limits.

yq(ZH-l)

xq(}""'l)(m, w) = — (m,w). (10)

Theorem 2. The sequences {w(”)(m, z)}, {z(”) (m,w)} are compact in the sense
of uniform convergence in the disk D. Derivatives of the first order of the functions
w™, 2(") constitute the sequences compact in the space Lo(D) in the sense of the weak
convergence.

Let

w(m, z) = lim w™(m,2), z(m,w)= lim 2™ (m,w)
n—00 n—00
be the limit functions of the convergent sequences and Jy,(z), J.(w) — their respective
Jacobians. Then the functions w, z satisfy the following equations
Az) = Jw(z)1 - o

wz(m, z) = Tw.(m, z), (11)

T Tu() A AR T+ L

1= J(w)A(2(w)) 1 — 1
zw(m, w) = T(w)A (z(w)) 1+ L Zu(m, w) (12)

almost everywhere in the disk D.

Proof. The sequences {w(™(m, 2)}, {z(™(m,w)} are the sequences of K = K (m)-
quasiconformal mappings normalized by the correspondences of the three pairs of the
boundary points. It means that they are compact in the sense of uniform convergence in
the disk D [6-10].

Using the equations (8), (10) we get that the Dirichlet integrals of the functions w(™,
2(") are uniformly bounded in the space Lo(D). From the theorem of Banach-Alaoglu [11]
it follows that the sequences of the functions w'"™ (m, 2), 2 (m,w), wén) (m, 2), zgl) (m, w)
are compact in the space Ly(D) in the sense of weak convergence.

Let us now prove that the functions w, z satisfy the equations (11), (12) respectively
almost everywhere in D.
To this end we’ll use the following quite evident lemmas.

Lemma 1. Let
Joo = {z € D| lim sup J,m) (2) = oo}
n—oo

and p(Jso) — its Lebesgue measure. Then
1(Jos) = 0.
Lemma 2. There exists a sequence {D,,} of the measurable sets D,, C D such that

lim u(D,)=m

n—oo
and the sequences
(umts {o@ma}, {wi}

are uniformly bounded on each of the sets D,,.



Shcherbakov E. A., Shcherbakov M. E. On Almost Global Half-Geodesic. . . 9

Now in order to complete the proof of the theorem it is sufficient to show that the
K-quasiconformal mapping w = w(m, z) is the solution of the equation (11) on each of
the set D,, and z = z(m,w) is the solution of the equation (12) on the set w(D,,).

It is clear that it is sufficient to this end to show that

lim Zﬂ/wgk)(m,z)Jw(k>(z)<I>(z)dxdy: 4/wz(m,z)Jw(z)@(z)dxdy (13)

n— oo

for any function ®(z) continuous on the set D.

As we only know that the sequences {J,,x }, {wik)} converge in the weak sense in
the spaces LP(D,,), p > 1, the problem we are to solve seems not to be trivial [12]. But
as the sequences {J,m }, {wé") (m, z)}, {w,&”)} are bounded on the sets D,, the equality
(13) proves to be valid which leads us to the following lemma.

Lemma 3. Let {w(”)} be a sequence of quasiconformal mappings converging almost
everywhere to the mapping w. Let us suppose that the sequence {J,m)} converges weakly
in the space L*(D) and the sequences {wén) (m, z)}, {w&")} converge weakly in the space
L?(D). Let us suppose that sequences

(umts {oPma ), {wi}

are uniformly bounded on each D,,. Then the equality (13) takes place for any function
®(z) continuous on the set D.

From the lemma 3 we get now that almost everywhere on each set D,, the function
satisfies the equation (11), i.e. it satisfies this equation almost everywhere in D.

In the same way we prove that the function z(m,w) also satisfies the equation (12)
almost everywhere in D.

The theorem is proved. O

3.2. Second stage

We have proved that there exists the sequence {w(m, z)} of quasiconformal mappings
satisfying equation (11). We can rewrite this equation in the following scalar form

1 1
—_— A_l n €T — - — A_l n
<m + T )) Uz (m, z) (m J >> vy(m, 2),

1 1
(m + Ale(n>> uy(m, z) = — ( - Ale(m) v (M, 2). (14)

m

Here the symbol J,x) denotes the Jacobian of the mapping w(m, z) = u(m,z) +
iv(m, z).

In what follows, we denote w(m, z) as w(™ (z), W™ (z) = u(™ (2)+iw ™ (2).

Theorem 3. Let X be a surface of the class Z. Then there exists a sequence {w(m)}
of the quasiconformal mappings w(™ (2), w™(z) = u™(2) + ™) (2), satisfying the
equations (14) such that the sequence {u\™ (z) + iv(™?2} is bounded in the space W'2(D).
The sequence {w(m)} converges uniformly on the disk D to the function w(z) = u(z) +
iv(z).
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The sequence {z(m)} of the functions z(™ inverse to the functions w(m)(z) s bounded

in the space WY (D) and compact in the sense of convergence in the space L(D),
1<qg<2.
Let D, be the set of pointwise convergence of the convergent subsequence of the sequence

{z(m)}. The function z = z(w) = lim 2™ realizes injective mapping of the set D, into
n— o0

the set D. The limit function w represents the inverse function to the functionz = z (w)
on the set z(D.) and the function z = z(w) defined over the set D, is inverse to the
function w = w(z) there.

The function w = w(z) satisfies the equations (11) almost everywhere in D and the
function z = z (w) satisfies the equation (12) almost everywhere in D.

Besides, for almost all v, —1 < v < 1, the lines v, = z(u,v), —1 < u < 1, represent
geodesics of the surface X covering the surface X up to the set of the null Hausdorff
measure.

Proof. Let us start with the following lemma.

Lemma 4. The functions u(™ of the sequence {u(m)} are equicontinuous in D and
uniformly bounded in the Sobolev space W12(D).

Proof (Proof of the lemma 4). Firstly, let us note that from the equations (14)
it follows that

1
ugm)Q + uém)z <A+ wa<m),
m

p(™2 4 v?gm)Z < A+ mdym). (15)

Let us consider the functions w(™),

wm) = (m) - L (m).
m

The mappings w(™ coincide with the mappings w(™ up to the affine mapping. It
means that the mappings w(™) are topological ones. The inequality (15) means that the
sequence of topological mappings w(™) is bounded in the space W12(D). This implies
that the mappings w(™) are equicontinuous in the closed disk D [10].

The lemma is proved. O

We note that

lim Imw™) =0.
m—r0o0

It means that we can judge only on the continuous properties of the functions u(™.

As for the functions v(™) they stay for a while unknown to us. Nevertheless, it is easy to
prove the following lemma.

Lemma 5. The sequence {v(m)Q} is uniformly bounded in the space W12(D).
Using lemmas 4 and 5 we prove the following lemma.

Lemma 6. The sequence {w(m)} is compact in the sense of the uniform convergence
on the disk D.

Let us now consider the inverse functions z(™ and prove the following lemma.

Lemma 7. The sequence {z(m)} of the functions (™) inverse to the functions w(™ (z)

is bounded in the space W(D) and is compact in the sense of convergence in the space
LY(D),1<g<2.
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For almost all the lines, v, = {v = const}, —1 < v < 1, the sequence {z(m)} 18
bounded in the space W 2(v,) and it is compact in the sense of uniform convergence on
such lines. The limit function z = z(w) transforms the collection V' of the lines 7, of the

uniform convergence of the sequence {z(m)} onto the set z(V') covering almost all the
disk D.

Proof (Proof of the lemma 7). As the functions z(") satisfy the equations (11)
then the following property takes place for the derivatives of the functions z(™) = Re z("),
y(™) = Im 2™,

1

+ AJ§> . (16)

Using the inequality (16) we get that the sequence {z(m)} is bounded in the space
WL1(D). It means that the sequence {z(™} is compact in the space LI(D), 1 < ¢ < 2 [13].
It is well-known [14] that it contains subsequence convergent almost everywhere in the
disk D. As always, we denote the convergent subsequence as the sequence itself. This
means that for almost all the lines v, —1 < v < 1, the sequence {z(m)} converges almost
everywhere on each of them. It is clear that the function w is inverse to the limit function
z = z(w) on the set z(D,.). Moreover, the convergence of the bounded sequence {z(™}
is uniform on the lines ~,. Really, the integrals

/Jz(m)du

Yo

are uniformly bounded for almost all v, v € (—1,1).
From this property we easily get that for almost all v, v € (—1,1) the integrals

1—v2
T o]
—V1-v2

are uniformly bounded. It means that the functions z("™) of the sequence {z(m)} are
equicontinuous on almost each of the lines v,, —1 < v < 1. The limit function z of
convergent subsequence is absolutely continuous on almost all the lines ~,, —1 < v < 1,
as the function of the variable v and images of the lines -, do not intersect.

We are going to prove now that the image z(V') cover the set D up to the set of the
measure equal to zero.

Firstly, let us note that it is well-known [11] that there exists a function J € L!(D)
such that for each function ® continuous and with compact support in D we have the
following property

// (o (w) — J(w)) ®(w)dudv = 0.

Secondly, we note that the point zg such that w(zg) € V' belongs to z(V).

Let us now suppose that there exists a set e of the positive measure such that
e* =w(e) C V¢ The complement V¢ of the set V' has null measure. Thus, we get that
p(e*) = 0. From this and weak convergence of J,») we get a contradiction.

The lemma is proved. O

The following lemma whose proof is standard gives us the differential equations, which
the functions z = z(w), w = w(z) satisfy.
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Lemma 8. The first order derivatives of the function w = w(z) = u + iv exist,
u € WhH2(D), v2 € WH2(D) and the function w = w(z) satisfies the equation (6).

The function z = z(w) has generalized derivatives z,, zz belonging to the space
LY(D), which satisfy the equation (7).

For the completion of the proof of the theorem it remains still to prove that almost
all the lines {v = const}, —1 < v < 1, are geodesics.

For the solution of this problem we use standard approach [15].

We see now that all the properties of the functions w(z), z(w) were proved in the
lemmas 4-8.
The theorem is proved. O

Summary

Using the theory of K-quasiconformal mappings we have constructed the solutions of
non-linear Beltrami equations giving almost global half-geodesic parameterization of the
twice differentiable surfaces with positive quadratic form.
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YVIK 517.5
O cymecTBoBaHUM TJIO0AJIBHON MOJIyTreoe3ndecKOoil
nmapaMeTpus3alu IIOBepPXHOCTe

E. A. IllepbakoB, M. E. IllepbakoB

Kybanckut 2ocydapecmeennoiti yrusepcumem, 2. Kpacnodap, Poccus

B crarhe paccmarpuBaercs 3amada O CyIECTBOBAHUH TIOOATBHON MOTYTEOAE3MIECKON Tapa-
METPHU3AIMH ITOBEPXHOCTENH. DTa MPobIeMa XOPOIIo U3BECTHA U SIBJISIETCS JIO CUX MTOP HEPEITEHHON
B obmieM Buje. M3BecTHO, UTO /151 IBaXK bl HENIPEPHIBHO AU dEPEHITNPYEMBIX IIOBEPXHOCTEMN
3Ta mpobsieMa mMeeT JIoKaJbHoe perenne. OmHako, mpumep TapaboonIa BPAIIEHNS YKA3bIBa-
€T Ha TO, YTO HEBO3MOXKHO, BOODIIE TOBOPsI, UCIIOJIH30BATH JIOKAJbHbBIE CETH JIJISI TIOCTPOEHUS
rJI00a/IbHOM KOOPJAMHATHON CETU, OIPENEIsieMOl MOJIyTe0/Ie3UIeCcKoi napamerpusarmeii. s
peleHus 3a/1a9u aBTOPBI WY T IO My TH, IPUBOIAINIEMY K IIOCTPOEHUIO U30TEPMUYIECKON MapaMeT-
PUBAIMY )15 IOBEPXHOCTEN C MOJIOKUTEHHO OIPEIe/IEHHON TIepBOoil KBaapaTudHoit popmoii. C
ITOM TIEJIBI0 OHU BBIBOIAT A depeHnnaibHoe ypaBHEHe, KOTOPOMY JOJIZKHO Y/IOBJIETBOPSTH
0TOOparKeHNe peasu3yiolee HyKHYIO apaMeTPU3AIHIO.

B omsimune ot kitaccuyeckoro ciydasi U30TEPMUYECKON TapaMeTpU3aIli, HOBOE ypaBHEHUE
MIpeJICTaBIIAET COOOM CYIECTBEHHO HeMHeHOe ypaBHenne. KpoMe TOro, s THITHYIeCKas: CUCTEMA,
oIlpejiesisieMasi HOBBIM YPaBHEHUEM, JIOIYCKAET BBIPOXKJIEHUE B TOYKAX, B KOTOPBIX SIKOOMAaH eé
pelteHusi 0OpaIAeTCsi B HOJIb MM OECKOHEYHOCTD. [Ipu 9TOM MHOXKECTBO BBIPOXK/IEHUS SIBJISIETCSI
3apaHee HEM3BECTHBIM. HensBecTHa M CKOPOCTDH BBIPOXKJICHUSI CUCTEMBI, KOTOPasi CyIIECTBEHHO
BJIsIeT HA CBOMCTBA HEPABHOMEPHO JIIUNITUYECKUX CHCTEM.

Jutst Ipeoj1o/ieHnst yKa3aHHBIX TPYAHOCTEH aBTOPHI BUIOU3MEHSIOT IIOCTAHOBKY 3aJIa9l: BMECTO
ceMefiCTBa Te0Ie3NIECKUX, TTOKPBIBAOIINX TIOBEPXHOCTD MOJTHOCTHIO, OHU OTPAHUYIUBAIOTCS CeMeli-
CTBAMH TAaKWX JIMHUIl, KOTOPBIE TIOKPBIBAIOT €€ JIMIIIh C TOYHOCTHIO JI0 MHOYKECTBA HYJIEBOU MepbI
Xaycmopda. C nomornbio Teopun K-KBa3UKOH(MOPMHBIX OTOOPAXKEHUN OHU CTPOSIT HETJIaKUE
OTODPpAYKEHUS, SIBJISIIONIMECsT OOOOITEHHBIMI PEITEHUSIMU HEJIMHEWHOTO ypaBHenus: beabrpamn,
KOTOpbIE, TEM He MeHee, TIO3BOJIAIOT BBIIEIUTh HYXKHOE ceMeiicTBO reoje3ndeckux. IlocTpoen-
Hasl aBTOPaAMU MMapaMeTpUu3alrs JaéT BO3MOKHOCTD HUCCJIEI0BATh HEK/IACCUYIECKNE PABHOBECHBIE
dOPMBI KUJIKAX KAIEb.
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