UDC 539.123-539.12.01 **Remarks to the Standard Theory of** K^0 , \bar{K}^0 Meson Oscillations. S-Strangeness and CP-Violation in Weak Interactions in System of K^0 , \bar{K}^0 Mesons

Kh. M. Beshtoev

Institute of Applied Mathematics and Automation of KBSC of RAS Nalchik, Kabardino-Balkarskaya Republic, Russia

Usually it is supposed that K^0 , \bar{K}^0 meson oscillations are realized through K_S , K_L meson states. It is necessary to remark that K_S , K_L meson states are produced at CP violation in the weak interactions, besides these states are nonorthogonal states. Since K_S , K_L meson states are nonorthogonal states they cannot generate K^0 , \bar{K}^0 meson oscillations. For this aim can be used only orthogonal states. In reality at strangeness — S violation K^0 , \bar{K}^0 mesons are transformed into superpositions of orthogonal K_1^0 , K_2^0 meson states. Then through these K_1^0 , K_2^0 meson states there are realized oscillations of K^0 , \bar{K}^0 mesons. Further K_1^0 , K_2^0 states at CP violation are transformed into superpositions of K_S , K_L meson states and then arise interference of K_S , K_L meson states but not oscillations. This picture is well in agreement with experiments. So we come to conclusion: K^0 , \bar{K}^0 meson oscillations are realized through K_1^0 , K_2^0 mesons, but not through K_S , K_L .

Key words and phrases: mesons, weak interactions, oscillations, interference, strangeness, parity, violation, oscillations theory

1. Introduction

This work is devoted to the discussion of K^0 , \bar{K}^0 meson oscillations.

 K^0 , \bar{K}^0 mesons are produced in strong interactions and their strangeness — S are $S_{K^0} = +1$, $S_{\bar{K}^0} = -1$, and they consist of s, d quarks; then $\bar{K}^0 = s\bar{d}$ and $K^0 = \bar{s}, d$. Since K^0 , \bar{K}^0 consist of quarks that participate in weak interactions, then after their production there take place changes generated by weak interactions; there take place violation of strangeness — S and CP parity. Then, at violation of strangeness — S neutral K^0 , \bar{K}^0 mesons are transformed into superposition of K_1^0 , K_2^0 mesons:

$$K^{0} = \frac{K_{1}^{0} + K_{2}^{0}}{\sqrt{2}}, \quad \bar{K}^{0} = \frac{K_{1}^{0} - K_{2}^{0}}{\sqrt{2}}, \tag{1}$$

where K_1^0 , K_2^0 mesons are eigenstates of the weak interaction that violates strangeness. Before the discovery of CP violation, it was assumed [1] that K^0 , \bar{K}^0 meson oscillations arise though K_1^0 , K_2^0 mesons. After the detection of CP violation [2,3] in literature [4,5], it was assumed that K^0 , \bar{K}^0 meson oscillations go through K_S , K_L mesons — eigenstates of weak interactions violating CP parity. Then, it is necessary to assume that (below we will give a more detailed consideration of this issue)

$$K^{0} \simeq \frac{K_{S} + K_{L}}{\sqrt{2}}, \quad \bar{K}^{0} \simeq \frac{K_{S} - K_{L}}{\sqrt{2}}.$$
 (2)

It is necessary to remark that in modern literature [4, 5] there is no mentioning of the existence of K_1^0 , K_2^0 mesons. This issue demands a more detailed investigation. Now lets proceed to the discussion of the following problem: how in reality there arise

Now lets proceed to the discussion of the following problem: how in reality there arise oscillations of K^0 , \bar{K}^0 mesons?

Received 18th March, 2016.

2. The Theory of K^0 , \bar{K}^0 meson oscillations

In the old theory of neutral K^0 , \overline{K}^0 meson oscillations [6,7] constructed in the framework of Quantum Mechanics, it is assumed that:

- 1. K^0 , \bar{K}^0 mesons are direct produced as superposition states of K_S , K_L meson states (see expr. (2)), i.e., $K^0 \cong \frac{1}{\sqrt{2}}(K_S + K_L)$ and $\bar{K}^0 \cong \frac{1}{\sqrt{2}}(K_S - K_L)$. This means that the K^0 , \bar{K}^0 mesons have no definite mass, i.e. their masses may vary in dependence on the K_S , K_L mesons admixture in the K^0 , \bar{K}^0 mesons states.
- 2. The mass eigenstates are K_S , K_L meson states, but not physical states of K^0 , \bar{K}^0 mesons.
- 3. $\overline{K^0}, \overline{K^0}$ meson oscillations are real (and indeed, K^0, \overline{K}^0 meson oscillations are real since masses of K^0 and \overline{K}^0 mesons are equal in agreement with *CPT* theorem [8]).

On the example of K^0 , \bar{K}^0 mesons (eigenstates of the strong interactions), we can see that in duration of the time $10^{-21}sec$ (typical time of the strong interactions), the K_S , K_L mesons-eigenstates of the weak interactions at CP violation cannot be produced, since their typical time is $10^{-6}-10^{-8}$ sec. Besides, every particle must be produced on its mass shell and it will be left on its mass shell while passing through vacuum. It is clear that the above-considered picture has a defect and therefore calls for correction.

A statement that K^0 , \bar{K}^0 mesons are direct produced as superposition of K_S , K_L mesons, leads to a conclusion that there is not necessity to take into account that K^0 , \bar{K}^0 mesons have strangeness. Indeed, we have to proceed from the requirement that they have strangeness and they are transformed into superposition of K_1^0 , K_2^0 mesons at violation of strangeness — S, i.e. $K^0 = \frac{1}{\sqrt{2}}(K_1^0 + K_2^0)$ and $\bar{K}^0 = \frac{1}{\sqrt{2}}(K_1^0 - K_2^0)$. In principle, we can assume that K^0 , \bar{K}^0 mesons are transformed into superpositions of K_1^0 , K_2^0 mesons; and then they are quickly transformed into superpositions of K_S , K_L mesons. But this process is a dynamic one, and CP violation is a very slow process; and then, there will arise a time delay (a gap) at CP violation, i.e., at generation of K_S , K_L states (see work [9]). Besides in [3,9] was shown that K_S , K_L states are nonorthogonal ones. Let us to consider it in more detail:

At the time of transition of K^0 , \bar{K}^0 mesons in weak interactions into superpositions of K_1^0 , K_2^0 mesons, there takes place strangeness — S violation. Then, obviously, K_1^0 , K_2^0 mesons have no strangeness. In weak interactions there take place the following semi-leptonic decay of $K^0 \to \pi^- e^+ \nu_e$ and $\bar{K}^0 \to \pi^+ e^- \bar{\nu}_e$ mesons at strangeness — Sviolation. K_1^0 meson has CP parity +1, and main mode of its decay are $K_1^0 \to 2\pi$ mesons, while K_2^0 meson has CP parity -1 and main mode of its decay is $K_2^0 \to 3\pi$ mesons. It is necessary to remark that K_1^0 , K_2^0 mesons also have semi-leptonic mode $\pi^-e^+\nu_e$, $\pi^+e^-\bar{\nu}_e$ decays, but since they are superpositions of K^0 , \bar{K}^0 mesons, then their numbers are equal, and as stressed above, their strangeness equals to zero. In this case, there will arise oscillations [10]; and therefore, $K^0 \to \bar{K}^0$, $\bar{K}^0 \to K^0$ transitions will arise. Probabilities of such transitions are produced by the following expressions [7] (it is necessary to assume that K_1^0 , K_2^0 meson states are quasistationary states until the time they will get transformed into superpositions of K_S , K_L mesons):

$$P(K^{0} \to K^{0}) = P(\bar{K}^{0} \to \bar{K}^{0}) = \frac{1}{4} \Big[e^{-\Gamma_{1}t} + e^{-\Gamma_{2}t} + 2e^{-\frac{(\Gamma_{1}+\Gamma_{2})t}{2}} \cos((m_{2}-m_{1})t) \Big], \quad (3)$$

$$P(K^{0} \to \bar{K}^{0}) = P(\bar{K}^{0} \to K^{0}) = \frac{1}{4} \Big[e^{-\Gamma_{1}t} + e^{-\Gamma_{2}t} - 2e^{-\frac{(\Gamma_{1}+\Gamma_{2})t}{2}} \cos((m_{1}-m_{2})t) \Big], \quad (4)$$

and expression for asymmetry is determined by the following formula:

$$A_{th}^{12}(t) = \frac{\left[P(K^0 \to K^0, t) + P(\bar{K}^0 \to \bar{K}^0, t)\right] - \left[P(K^0 \to \bar{K}^0, t) + P(\bar{K}^0 \to K^0, t)\right]}{\left[P(K^0 \to K^0, t) + P(\bar{K}^0 \to \bar{K}^0), t\right] + \left[P(K^0 \to \bar{K}^0) + P(\bar{K}^0 \to K^0, t)\right]} = \frac{2\cos[(m_2 - m_1)t]e^{-(\Gamma_1 + \Gamma_2)t/2}}{e^{-\Gamma_1 t} + e^{-\Gamma_2 t}}.$$
 (5)

If we are to substitute numerical value of parameters ($\Gamma_1/\Gamma_2 = 580$, $\Delta m_{12} = 0.533 \cdot 10^{-12}$ MeV, $t' = t\Gamma_1$) in this expression, then we obtain:

$$A_{th}^{12}(t) = \frac{2\cos[0.474t']e^{-0.5t'}}{e^{-t'} + e^{-0.00175t'}}.$$
(6)

Figure 1 gives experimental data obtained in work [5] together with the curve obtained by using expression (6). It is necessary to stress that these data were interpreted in [5] as K^0 , \bar{K}^0 oscillations via K_S , K_L mesons. It is important to stress that these states are nonorthogonal states [3,9] therefore they cannot be used for oscillations generation. For this aim can be used only orthogonal states (i.e., K_1^0 , K_2^0 orthogonal states).

We see that expression (6) for asymmetry is well in agreement with experimental data. Also, it is necessary to remark that the work [5] has not taken into account that at CP violation there has to be present phase $\delta = 43.5^{\circ}$. This phase has to be present if it is suggested that there are produced superposition states of K_S , K_L mesons (see [10]). In a case of strangeness violation this phase does not appear. From Figure 1 we can make a conclusion that K^0 , \bar{K}^0 mesons oscillations come to an end in region $t' \ge (7-8)$ $(t' = \frac{t}{\tau_c})$, where $\tau_c = 0.892 \cdot 10^{-10}$ sec.). These K^0 , \bar{K}^0 meson oscillations come to an end, since these oscillations are realized via K_1^0 , K_2^0 meson states; but since K_1^0 mesons decay quickly, then they will be existent mainly in present long living K_2^0 mesons. Then, condition for K^0 , \bar{K}^0 meson oscillations is not fulfilled [11].

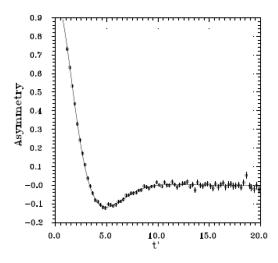


Figure 1. A curve obtained from expression (6) together with experimental data obtained in work [5].

Then, what will there arise in the system of K_1^0 , K_2^0 mesons? Since weak interactions violate CP parity, then K_1^0 , K_2^0 mesons will be transformed into superposition states of K_S , K_L mesons (eigenstates at CP violation). It is important to remark that K^0 , \bar{K}^0 cannot be direct transformed into superpositions of K_S , K_L mesons since they appear only at CP violation but not at strangeness violation. Also, it is necessary to remark that weak interactions with CP violation are a slow process, and it becomes strongly apparent at $t' \ge (7-8)\tau_c$ (see below), i.e., only at $t' \ge (7-8)\tau_c$ the main part of K_1^0 , K_2^0 mesons has time to be transformed into superposition of K_S , K_L mesons; although such superposition states start appearing direct after the ascent of K_1^0 , K_2^0 meson states).

Then, K_1^0 , K_2^0 mesons are transformed in the following superpositions of K_S , K_L mesons:

$$K_1^0 = \frac{1}{\sqrt{1+\varepsilon^2}} (K_S + \varepsilon K_L),$$

$$K_2^0 = \frac{1}{\sqrt{1+\varepsilon^2}} (K_L + \varepsilon K_S).$$
(7)

where $\varepsilon = |\varepsilon|e^{-i\delta}$.

Now there emerges the following question: Do oscillations between K_1^0 , K_2^0 meson states take place via K_S , K_L mesons, or there takes place only interference between these K_S , K_L states? The problem of oscillations existence at CP violation was consider in work [9] in detail (see also work [12]). There following conclusion was made: all existent experimental data on CP violation are well in agreement with theoretical calculations in the case when there takes place interference between K_S , K_L states, but not oscillations. It means that at CP violation oscillations do not arise and these states are not orthogonal states. As an illustration, we consider a figure and some expressions from work [9].

 K_S , K_L meson states are stationary states, and then their expressions for time dependence are determined by the following formulas:

$$K_S(t) = e^{(-im_S - \Gamma_S/2)t} K_S(0), \quad K_L(t) = e^{(-im_L - \Gamma_L/2)t} K_L(0), \tag{8}$$

where Γ_S , Γ_L , m_S , m_L are widths of decays and masses of K_S , K_L mesons.

Expressions for probabilities of interference of K_S , K_L mesons is obtained by using (8) and (7) have the following form:

$$P(K^{0}, K_{1} \to K_{1}, t) \simeq \simeq \frac{1}{2} \Big[e^{(-\Gamma_{S}t)} + |\varepsilon|^{2} e^{(-\Gamma_{L}t)} + 2|\varepsilon| e^{(\frac{1}{2}(\Gamma_{S} + \Gamma_{l})t)} \cos((m_{L} - m_{S})t - \delta) \Big], \quad (9)$$

$$P(\bar{K}^0, K_1 \to K_1, t) \simeq \simeq \frac{1}{2} \Big[e^{(-\Gamma_S t)} + |\varepsilon|^2 e^{(-\Gamma_L t)} - 2|\varepsilon| e^{(\frac{1}{2}(\Gamma_S + \Gamma_l)t)} \cos\left((m_L - m_S)t - \delta\right) \Big].$$
(10)

An expression for asymmetry $A_{th}(t)$ obtained by using expr. (9), (10) has the following form:

$$A_{th}(t) = \frac{P(\bar{K}^{0}, K_{1}^{0} \to K_{1}^{0}, t) - P(K^{0}, K_{1}^{0} \to K_{1}^{0}, t)}{P(\bar{K}^{0}, K_{1}^{0} \to K_{1}^{0}, t) + P(K^{0}, K_{1}^{0} \to K_{1}^{0}, t)} = -\frac{2\varepsilon \cos[(m_{L} - m_{S})t - \delta]e^{-(\Gamma_{S} + \Gamma_{L})t/2}}{e^{-\Gamma_{S}t} + \varepsilon^{2}e^{-\Gamma_{L}t}}.$$
 (11)

If we substitute value parameters $\delta = 43.5^{\circ}$, $\Gamma_S = \frac{1}{\tau_c}$, Γ_L , $\varepsilon = 2.23 \cdot 10^{-3}$, $\Delta m_{LS} \cong \Delta m_{12}$ in (11), then we obtain:

$$A_{th}(t') = -\frac{2 \cdot 0.00223 [\cos(0.477t - 0.751)] e^{-t'(581/1160)}}{e^{-t'} + (0.00223)^2 e^{-t'/580}}.$$
(12)

Figure 2 shows a curve line obtained by the use of expression (12) together with experimental data obtained in work [3].

The asymmetry $A_{th}(t')$ connected with CP violation become nonzero at t' > (7-8), i.e., CP violation begins to be evident not direct at $t_c = 0$, but at t' > (7-8); and asymmetry connected with strangeness — S violation appears at t' = 0: (7–8).

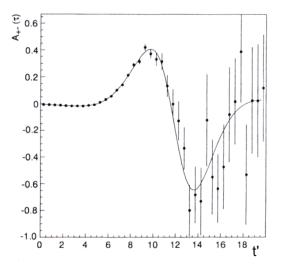


Figure 2. A curve line obtained by the use of expression (12) together with experimental data obtained in work [3].

Expression (12) is in agreement with experimental data obtained in [3] at CP violation. K_S , K_L meson states are stationary states (i.e., they have definite masses); further, since CPT is not violated, nothing will further arise.

Thus, from the above-considered experimental data we come to a conclusion that K^0 , \bar{K}^0 mesons cannot be direct produced as superpositions of K_S , K_L mesons that are eigenstates at CP violation. If K^0 , \bar{K}^0 mesons could be direct transformed into superpositions of nonorthogonal K_S , K_L meson states then there can arise only interference between K_S , K_L states but not K^0 , \bar{K}^0 meson oscillations. Experiment [3] and calculation [9] has shown that at CP violation arises only interference but not oscillations.

As a matter of fact, K^0 , \bar{K}^0 mesons have to be transformed into superpositions of K_1^0 , K_2^0 mesons at violation of strangeness — S, and further there take place oscillations (it is important to remark that K_1^0 , K_2^0 states are orthogonal quasistationary ones). Then K_1^0 , K_2^0 mesons are transformed into superposition of K_S , K_L mesons; and then, there will take place interference between these states. Such picture is well in agreement with experimental data [3,5]. As we see we cannot ignore K_1^0 , K_2^0 meson states in the system of K^0 , \bar{K}^0 mesons, and these two processes are realized at different time intervals.

We see that the idea that these both processes — oscillations and interference- can be realized only through K_S , K_L states, has no confirmation in the framework of the standard approach.

Therefore, we have to fulfill some adjustment to the theory of K^0 , \bar{K}^0 oscillations. Following that, points 1–3 in the beginning of this section obtain the following form:

- K⁰, K
 ⁰ mesons are produced in strong interactions, and at strangeness violation by weak interactions, they are transformed into superposition states of K⁰₁, K⁰₂ mesons (see expr. (1)); and K⁰, K
 ⁰ mesons are in their mass shell.
 K⁰₁, K⁰₂ meson states are quasistationary states before CP violation, and they have
- definite masses.
- 3. $\overline{K^0}$, $\overline{K^0}$ meson oscillations are real since masses of K^0 and $\overline{K^0}$ mesons are equal in agreement with CPT theorem [8].

Conclusion 3.

In the standard theory of K^0 , \bar{K}^0 meson oscillations, it is assumed that K^0 , \bar{K}^0 mesons are direct produced as superpositions of K_S , K_L mesons (indeed, K_S , K_L mesons are produced in weak interactions at CP violation). Then, K^0 , \bar{K}^0 meson oscillations have to be realized through these K_S , K_L mesons and then these mesons are stationary states. In reality in weak interactions takes place violation of strangeness — S and CPstates. In rearry in weak interactions takes place violation of strangeness -S and CT parity. Eigenstates at strangeness -S violation are K_1^0, K_2^0 orthogonal meson states, and eigenstates at CP violation are non orthogonal K_S, K_L meson states. At strangeness violation, primary K^0, \bar{K}^0 mesons are transformed into superposition of K_1^0, K_2^0 mesons; and then there arise K^0, \bar{K}^0 meson oscillations. The K_1^0, K_2^0 states are quasistationary states. Further at CP violation, K_1^0, K_2^0 states are transformed into superpositions of K_2^0, \bar{K}^0 meson oscillations. The K_1^0, K_2^0 states are quasistationary states. K_S, K_L mesons; then, interference between these K_S, K_L mesons states arises instead of oscillations. The K_S, K_L states are stationary states. This picture is well in agreement with experiment [3,5]. We see that standard theory of K^0 , \bar{K}^0 meson oscillations is not in agreement with the experimental data. Indeed, K^0 , \bar{K}^0 oscillations go through K_1^0 , K_2^0 states, but not through K_S , K_L states.

References

- L. B. Okun, Leptons and Quarks, Nauka, Moscow, 1982, in Russian. 1.
- J. H. Christenson, et al., Evidence for the Decay of the K_2^0 Meson, Phys. Rev. Lett. 2.13 (1964) 138.
- 3. A. Aposotolakis, et al., A Determination of the η_{\pm} Violation Parameter from the Decay of Strangeness-Tagged Neutral Kaons, Phys. Lett. B458 (1999) 545.
- J. Beringer, et al., Phys Rev. D 86 (2012) 010001. 4.
- A. Angelopoulos, et al., Measurement of the K_S , K_L Mass Difference Using Semilep-5. tonic Decays of Tagged Neutrak Kaons, Phys. Letters B444 (1998) 38.
- 6. V. Gribov, B. M. Pontecorvo, Neutrino Astronomy and Lepton Charge, Phys. Lett. B 28 (1969) 493.
- 7. S. M. Bilenky, B. M. Pontecorvo, Lepton Mixing and Neutrino Oscillations, Phys. Rep. C41 (1978) 225.
- 8. S. S. Shweber, An Introduction to Relativistic Quantum Field Theory, Nauka, Moscow, 1963, in Russian.
- K. M. Beshtoev, About Absence of Oscillations at CP Violation and Presence of 9. Interference between $K_{\underline{S}}$, K_L Meson States in the System of K^0 , \overline{K}^0 Mesons, Physics of Particles and Nuclei Letters 13 (2016) 46.
- 10. K. M. Beshtoev, S. Dubnicha, A. Z. Dubnichkova, Are K_1^0 , K_2^0 Real Particles or They are Some Theoretical Fiction, 16th Small Triangle Meeting, Pticie, October 5-8 (2014).

- 11. K. M. Beshtoev, About K^0 , \bar{K}^0 Meson Oscillations at Strangeness Violation by Weak Interactions without and with Taking into Account Meson Decays, UFNIn Russian, arXive:hep-ph/1303.1815v.1.
- 12. K. M. Beshtoev, About Absence of Oscillations at CP Violation and Presence of Interference between K_S , K_L Meson States in the System of K^0 , \bar{K}^0 mesons, JINR Communication E2-2014-63ArXive:1401.5989v2 [hep-ph].

УДК 539.123-539.12.01

Замечания к стандартной теории осцилляции K^0 , \bar{K}^0 мезонов. Нарушение странности — S и CP чётности в слабых взаимодействиях в системе K^0 , \bar{K}^0 мезонов

Х. М. Бештоев

Научно-исследовательский институт прикладной математики и автоматизации г. Нальчик, Кабардино-Балкарская республика, Россия

Обычно предполагается, что K^0 , \bar{K}^0 мезонные осцилляции реализуются через K_S , K_L мезонные состояния. Нужно заметить, что K_S , K_L мезонные состояния возникают при нарушении CP чётности в слабых взаимодействиях, и кроме этого, эти состояния не являются ортогональными и поэтомуони не могут генерировать K^0 , \bar{K}^0 мезонные осцилляции. На самом деле, при нарушении странности -S, K^0 , \bar{K}^0 мезоны превращаются в суперпозиционные состояния ортогональных K_1^0 , K_2^0 мезонных состояний, и далее через эти состояния возникают K^0 , \bar{K}^0 осцилляции. В дальнейшем при CP нарушении K_1^0 , K_2^0 мезоны превращаются в суперпозиционные состояния ортогональных K_1^0 , K_2^0 мезонных состояний, и далее через эти состояния возникают K^0 , \bar{K}^0 осцилляции. В дальнейшем при CP нарушении K_1^0 , K_2^0 мезоны превращаются в суперпозиционные состояния K_S , K_L мезонов, и далее возникает интерференция между этими K_S , K_L мезонными состояниями, но осцилляции при этом не возникают. Такая картина находится в хорошем согласии с экспериментом. Итак, приходим к заключению: осцилляции K^0 , \bar{K}^0 мезонов реализуется через K_1^0 , K_2^0 мезоны, а не через K_S , K_L мезоны.

Ключевые слова: мезоны, слабые взаимодействия, осцилляции, интерференция, странность, чётность, нарушение, теория осцилляции

Литература

- 1. *Окунь Л. Б.* Лептоны и кварки. М.: Наука, 1982. С. 77, 85.
- 2. Christenson J. H. et al. Evidence for the Decay of the K_2^0 Meson // Phys. Rev. Lett. 1964. Vol. 13. P. 138.
- 3. Aposotolakis A. et al. A Determination of the η_{\pm} Violation Parameter from the Decay of Strangeness-Tagged Neutral Kaons // Phys. Lett. 1999. Vol. B458. P. 545.
- 4. Beringer J. et al. // Phys Rev. D. 2012. Vol. 86. P. 010001.
- Angelopoulos A. et al. Measurement of the K_S, K_L Mass Difference Using Semileptonic Decays of Tagged Neutrak Kaons // Phys. Lett. 1998. Vol. B444. P. 38.
- Gribov V., Pontecorvo B. M. Neutrino Astronomy and Lepton Charge // Phys. Lett. B. — 1969. — Vol. 28. — P. 493.
- Bilenky S. M., Pontecorvo B. M. Lepton Mixing and Neutrino Oscillations // Phys. Rep. — 1978. — Vol. C41. — P. 225.
- 8. Шбебер С. С. Введение в релятивистскую квантовую теорию поля. М.: Наука, 1963.
- 9. Beshtoev K. M. About Absence of Oscillations at CP Violation and Presence of Interference Between K_S , K_L Meson States in the System of K^0 , \bar{K}^0 Mesons // Physics of Particles and Nuclei Letters. 2016. Vol. 13. P. 46.

94

- Beshtoev K. M., Dubnicha S., Dubnichkova A. Z. Are K₁⁰, K₂⁰ Real Particles or They are Some Theoretical Fiction. — 2014. — 16th Small Triangle Meeting, Pticie, October 5-8. 16th Small Triangle Meeting, Pticie, October 5-8.
- 11. Beshtoev K. M. About K^0 , \bar{K}^0 Meson Oscillations at Strangeness Violation by Weak Interactions without and with Taking into Account Meson Decays // $\mathcal{Y}\Phi H. 2013$.
- 12. Beshtoev K. M. About Absence of Oscillations at CP Violation and Presence of Interference between K_S , K_L Meson States in the System of K^0 , \bar{K}^0 Mesons // JINR Communication E2-2014-63. 2014. ArXive:1401.5989v2 [hep-ph].

© Beshtoev Kh. M. , 2016