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Problem and goal. Today, graduates studying in the physical and mathematical areas of training in
the profile of applied mathematics have high requirements [23; 24]. Such graduates should have not
only fundamental knowledge in the disciplines of applied mathematics, have a scientific outlook, skills
and research of applied tasks with the help of mathematical modeling, but also strive to implement
applied research through environmental technologies. The achievement of such goals in teaching
students applied mathematics requires the use of various pedagogical and information technologies in
the educational process, the development of learning content, new forms and methods of training, the
involvement of specialists in applied mathematics in teaching.

Methodology. In the process of training specialists in applied mathematics, implemented the idea
of developing their mathematical creativity, strengthening the motivation for the formation of deep
theoretical and practical knowledge in the disciplines of applied mathematics and the foundations of
humanitarian culture. The implementation of these important ideas is carried out on the basis of
extensive use of interdisciplinary scientific relations in the conditions of humanitarization of university
mathematical education. The formation of students’ fundamental knowledge of applied mathematics,
the foundations of humanitarian culture is achieved by developing the content of such training on the
basis of modern scientific achievements of applied mathematics, the implementation of scientific and
educational, scientific and educational and humanitarian potential of teaching applied mathematics.

Results. The obtained fundamental knowledge in applied mathematics, formed scientific worldview
and humanitarian culture will allow graduates in their future professional activities to show a humane
attitude to nature and the world, to apply environmental technologies in the implementation of applied
research. In addition, with such a wealth of knowledge, graduates are able to be worthy members of
the modern information society with a humanitarian culture.

Conclusion. In the process of teaching applied mathematics, using innovative pedagogical
technologies, it is advisable for students not only to give fundamental scientific knowledge, but also to
instill the foundations of humanitarian culture.

Key words: teaching applied mathematics; fundamental scientific knowledge in applied mathematics;
interdisciplinary scientific relations; student

Problem statement. Scientific achievements of applied mathematics are widely used
in many areas of human activity, such as space exploration, airspace, earth environment,
the bowels of the oceans; energy, industrial production, economy, agriculture and other
spheres of human activity. Fundamental results in the creation of applied mathematics
was made by such scientists as G. Galilei, J.L. D’Alembert, N.E. Zhukovsky, A.N. Krylov,
D.K. Maxwell, I. Newton, M.V. Ostrogradsky, S.D. Poisson, V.A. Steklov, D.G. Stokes,
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J.B.J. Fourier, S.A. Chaplygin, L. Euler et al. S.N. Bernstein, O.M. Belotserkovsky,
E.P. Velikhov, V. Valkovic, N.M. Gunter, M.V. Keldysh, A.N. Kolmogorov, S.P. Koroley,
M.A. Lavrent’ev, A.M. Lyapunov, O.E.H. Law, G.I. Marchuk, A.A. Samarskii,
S.L. Sobolev. A.N. Tikhonov, E. Schrodinger and other scientists formed modern applied
mathematics (see, for example, [1—4; 6—11; 19; 21; 22; 25—32]).

A.A. Petrov notes that “Applied mathematics has given excellent tools of knowledge
of nature. The study of planetary motion ended with the formulation of general principles
of classical mechanics. The concept of momentum, energy, conservation principles
provided a heuristic basis for studies of molecular motion and heat. Studies of electrical
and magnetic phenomena, which ended with Maxwell’s equations, led to the general
principles of the theory of relativity. Schrodinger equation forced to reconsider the idea
of determinism in nature. The study of nonlinear parabolic equations revealed the general
principles of synergetics. Applied mathematics gave not only the tools of knowledge, but
also the transformation of the world. The study of the stability of the watt regulator opened
the modern control theory. A large section of it was the theory of motion stability developed
by A.M. Lyapunov. The optimal control theory of L.S. Pontryagin put on the scientific
foundation of the construction of technical objects” [25. Pp. 5—6].

Yu.N. Pavlovsky assigns the most important role of applied mathematics in the
development of modern society, noting that “...mathematical modeling will be interpreted
as a technology used to predict the development of real phenomena, processes, systems
orto predict their properties. This technology (it can be considered as a part of information
technology, as it allows to extract new information from the one that is already available)
is built into the process of production of material goods and in the process of their
consumption so that neither one nor the other in the modern form can exist without this
technology, just as they can not exist without modern technologies in the field of energy,
transport, etc. ...” [25. Pp. 75—76].

Let’s pay attention to what needs of society were satisfied by applied mathematics for
the last hundred years. G.G. Malinetsky integrates embedded in the practice of applied
research in the most important task. As the first super-task, which was solved in the XX
century, he calls the creation of weapons systems and means of protection and notes that
the creation of new weapons contributed to the rapid development of natural science.
According to him, “...more than half of the fundamental research in developed countries
in the past century was initiated by the needs of military-industrial complexes. However,
with the creation of strategic weapons systems, these areas of work have come to a natural
limit — a number of countries have been able to cause unacceptable damage to all
conceivable enemies thousands of times in a variety of ways. The relevant work ceased
to be an incentive for fundamental research, and reached the engineering, technical level.
Apparently, the creation of a new shield and sword will not be a super-task in the beginning
century...” [25. P. 143]. As another super-task of G.G. Malinetsky highlights the task that
was solved in connection with the creation of new technologies aimed at expanded
reproduction, the creation of new goods and services. At the same time he says: “...we
can not agree with the authors of the famous book Factor four — if in the XX century
industry sought to produce more and more diverse, in the XXI century it will produce
cheaper and more economical [9]. Therefore, the production of goods will not be a super-
task...” [25. Pp. 143—144].
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Speaking about the prospects for the development of applied mathematics,
G.G. Malinetsky believes that in the new century there will be super-tasks that will
stimulate the development of new applied research and outlines three such interdisciplinary
super-tasksas:

— “...the first super-task, risk management and security of complex systems can be
singled out. One of the main functions of science in the near future, apparently, will be
the prediction and prevention of disasters, catastrophes and other hazards in the natural,
man-made social spheres...” [25. P. 144];

— “...the second super-task is now often called neuroscience. One of the most
important predicted achievements of science of the XXI century, according to many
experts, will be the opening of the psychological code. That is, the elucidation of encoding,
transmission, algorithms of information processing in the nervous system, biological
analysis of consciousness. Modern information technologies, the use of a number of types
of tomographs and algorithms for reconstruction of volumetric structures allow us to see
the thought — to record the activity of different parts of the brain in real time...” [25.
P. 145];

— “...the third super-task is sometimes called an alternative or theoretical history.
This task is increasingly associated with the analysis of strategic risks — events, technologies,
solutions that can significantly narrow the corridor of capabilities of countries, regions
or civilizations, lead them to a crisis or catastrophe...” [25. P. 147].

If from that point of view to look at applied mathematics, it is one of such phenomena
of culture, which currently affects many areas of human activity in our society.

Methods of research. Professional orientation of teaching applied mathematics
bachelors and masters in the physical and mathematical areas of training determines the
list of basic mathematical disciplines included in the relevant educational programs for
which such training is conducted. Among such basic mathematical disciplines of applied
mathematics are mathematical analysis, functional analysis, complex analysis, analytical
geometry, algebra, optimization methods, probability theory and mathematical statistics,
discrete mathematics and mathematical logic, numerical methods, integral equations,
ordinary differential equations, partial differential equations and other mathematical
disciplines of applied mathematics.

Fundamental knowledge of the above basic mathematical disciplines of applied
mathematics allows bachelors and undergraduates to master a variety of methods of
mathematical physics, which can be used to study a variety of mathematical models.

During the years of existence of faculties and departments of applied mathematics in
Russia formed the leading scientific schools in the fundamental areas of applied
mathematics, such as mathematical physics and spectral theory of differential equations,
inverse and ill-posed problems, computational methods and mathematical modeling,
nonlinear dynamic systems and control processes, synergetics, game theory and operations
research, optimal control and system analysis, mathematical cybernetics and mathematical
logic, probability theory and mathematical statistics, theoretical and applied programming
and other scientific schools.

Mathematical modeling as a scientific method of studying the world in modern world
science is one of the central places. This circumstance is explained by the fact that
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mathematical models have important properties from the scientific point of view, including
scientific and cognitive potential and universality. And the presence of modern computer
technology allows mobile research and visualization of solutions to a wide variety of
mathematical models. It is not a coincidence that mathematical modeling is included in
the content of many disciplines of applied mathematics.

Mathematical modeling is widely used in modern applied research (see, for example,
[1—4; 6; 7; 10; 13; 16—19; 21; 25—32]). The great need for the use of mathematical
models in applied research is explained by the possibility of effective research of objects
and processes of different nature, difficult or inaccessible to man, determining their
location, shape, structure of inclusions, etc., revealing their cause-and-effect relationships.
All this, in many respects, became possible thanks to the use of modern information and
telecommunication technologies.

Results and discussion. In the process of teaching applied mathematics, students
acquire the skills and abilities to form new scientific knowledge about the world, about
the physical processes and phenomena occurring in it and their cause-and-effect
relationships.

For example. In the study of mathematical models of electrodynamics, students gain
scientific knowledge about the processing and interpretation of the results of measuring
electromagnetic radiation generated by various objects, the sources of electromagnetic
fields, the forms of bodies on which the field is scattered, the inhomogeneities of the
earth’s environment, the synthesis of the electromagnetic field, etc. (see, for example,
[16—19; 21; 31]). In the study of mathematical models of atmospheric optics, students
gain scientific knowledge about the physical state of the atmosphere, the concentration
of absorbing and scattering substances, the size and shape of aerosol particles, their
composition and structure, the parameters of the fine structure of the spectrum, the
radiation intensity, etc. (see, for example, [28]). In the study of mathematical models of
photo processing students gain scientific knowledge in the field of pattern recognition,
reconstruction of blurred and defocused images, tomography (see, for example, [22]).

When finding solutions to mathematical models, students also acquire new scientific
knowledge in subject areas that are not included in the content of traditional mathematical
disciplines of applied and computational mathematics, and can be acquired only in the
process of teaching special courses. For instance, in the study of mathematical models
of spectral problems, students acquire scientific knowledge in the field of spectral analysis,
which consists in determining the operators of some of their spectral characteristics.
Students realize that such mathematical models play an important role in applications
of physics, quantum mechanics, geophysics, meteorology, radioelectronics, elasticity
theory and other applications. In the process of solving such mathematical models,
students master the method of spectral maps, the method of reference models, the method
of transformation operator and other mathematical methods (see, for example, [32]).

Let us give more examples. In the study of mathematical models using approximate
methods, students acquire deep scientific knowledge in the field of computational
mathematics. Among such scientific knowledge — the theory of difference schemes,
finite-difference methods, method of run, iterative methods, Tikhonov regularization
method, Newton — Kantorovich method, gradient methods, discrete analogue of the
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Volterra operator equation with bounded Lipschitz continuous core. Methods of error
estimation of approximate solutions of mathematical models to exact solutions and other
methods are mastered. At the same time, students widely use computer technology to
implement computational algorithms for finding approximate solutions of mathematical
models that demonstrate to students their efficiency and mobility in the study of applied
problems.

Modern applied mathematics is characterized by such features as analysis of
mathematical models, increasing the role of general mathematical structures, the spread
of ideas of optimality, algorithmization, humanitarization and other features. In this
connection, the implementation of interdisciplinary scientific relations in the process of
teaching applied mathematics, due to the need to integrate natural science and humanities,
which allows students to form a system of fundamental knowledge in the field of applied
mathematics, to comprehend the cognitive and humanitarian potential of mathematical
models, to understand the epistemological processes in applied mathematics, to identify
the basic concepts of scientific disciplines, such as computer science, philosophy and
other scientific disciplines.

For clarity, we give examples. When teaching applied mathematics, students are
informed that mathematical models are universal and are able to describe processes of
different nature. And this universalism increases the cognitive potential of such
mathematical models. Students are explained that mathematical models are universal
when they are syntactic in nature, when semantics, meaningful knowledge and the
meaning of the simulated process remain outside of this mathematical model. In this
case, it is difficult to conclude what specific process is described by this model.

Students realize that the methods of research of mathematical models, their cognitive
potential can be used in the study of various nature of applied problems. In the process
of such training interdisciplinary connections of applied mathematics and informatics
are revealed; students develop mathematical creativity, scientific outlook, fundamental
knowledge in the field of applied mathematics; system of scientific knowledge about the
basic concepts of computer science as a scientific discipline, such as information,
modeling, formalization, algorithmization, computational experiment, syntax, semantics,
computer graphics, information technology and other basic concepts of computer science.
The subsequent analysis of the applied and humanitarian aspects of the obtained results
of the inverse problem allows students to draw appropriate logical conclusions about the
studied process and, ultimately, to obtain new information, to study its properties and to
comprehend its value (see, for example, [5; 12—17; 20]).

Considering in the classroom mathematical problems for the system of Maxwell’s
equations, to the understanding of students, teachers are informed that the reasons for
such problems are, in particular, the coefficients of dielectric and magnetic permeability,
electrical conductivity of the earth’s environment, and the consequences are additional
information about the solution of the relevant direct problems. Having such knowledge,
exploring such applied problems by mathematical methods, students form scientific
knowledge about the heterogeneous structure of the earth’s environment, its deep
properties. Such scientific knowledge is widely used in seismology, geoelectrics, gravimetry,
electrodynamics and other scientific fields; in the search for minerals, in industry.
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Implementation of interdisciplinary scientific relations in teaching applied mathematics,
allows students to form a deep subject theoretical knowledge, acquire the skills and abilities
of using mathematical methods for the study of applied problems. Students are able to
carry out applied and humanitarian analysis of the solutions of mathematical problems,
to develop a scientific outlook and mathematical creativity, to replenish their scientific
knowledge in applied and computational mathematics, as well as in the field of such
fundamental concepts of philosophy as cause and effect.

In the process of teaching applied mathematics attention is paid to the philosophical
aspects of the phenomenon of acquired information. Realizing the philosophical aspects
of the identified in solving applied problems of cause-and-effect relations and the
phenomenon of new information, students understand that applied mathematics is related
to such methods of human knowledge as theory, experiment and philosophy. Philosophical
understanding of cause-and-effect relationships and the concept of information helps
students to master the methodological possibilities in understanding the surrounding
reality; it helps to understand that the information acquired as a result of solving the
inverse problem is also connected with fundamental philosophical questions of natural
science.

Conclusion. Analysis of applied, humanitarian and philosophical aspects of the obtained
results of solving applied problems allows students to form appropriate logical conclusions
about the studied process, to comprehend the scientific and humanitarian value of the
new information. The integration of interdisciplinary scientific relations in the process
of teaching applied mathematics allows to identify the humanitarian, scientific and
educational potential of such training, to identify the contribution of teaching applied
mathematics in humanitarization and fundamentalization of mathematical education.

© Kornilov V.S., 2019
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MexaucunninHapHble Hay4Hble CBA3U
B coaep>XaHum o0y4yeHUus NpukiagHom maTteMmaTuke

B.C. Kopaunos

MoOCKOBCKMIT TOPOICKOI MearorndecKuii YHUBEpCUTET
Poccuiickan Pedepayus, 127521, Mockea, ya. llepememvesckas, 29

IIpo6aema u nemb. CeroHs K BIITYCKHUKAaM, 00yJarouuxcsl Ha (pU3nKo-MareMaTuyeckKux Ha-
MPaBJICHUSIX TTOATOTOBKY T10 MPOMUIIO MPUKIATHON MaTeMaTUKHU, TIPEIbSBISIOTCS BICOKHE Tpe-
6oBanus [23; 24]. OHU DOKHEI UMETh He TOJIBKO (PyHIAMEHTaJIbHBIC 3HAHUS 110 JUCHUILUIMHAM
MIPUKIIaHON MaTeMaTUKM, 00JIafaTh HAyYHBIM MUPOBO33PEHUEM, YMEHUSIMU U HaBbIKaMU MCCIIe-
JIOBAaHUSI TIPUKJIAIHBIX 3a1a4 MPY TTOMOIIM MaTeMaTUYECKOTO MOJCIUPOBAHUST, HO M CTPEMUTLCS
peaau3oBbIBaTh MIPUKIAIHbIE UCCIETOBAHUS MMPUPOAOOXPAHHBIMU TEXHOJOTUIMU. JIoCTUXKEHUE
TaKUX LieJieil mpyu 00yYeHUU CTYIEHTOB MPUKIIAAHON MaTeMaTHKe TpeOYeT UCTTOIb30BAHUS B yUeOHOM
Npoliecce pa3IuYHbIX MearornyecKux 1 MH(GOopMalMOHHBIX TEXHOJOTUI, pa3paboTKU CONepKaHMs
00y4yeHUs1, HOBBIX (hOPM 1 METOIOB OOYYEHUSI, TPUBJICUEHUS K MIPENOAaBaTeIbCKON NesITeIbHOCTH
CIEMaIMCTOB 0 MPUKJIaTHOW MaTeMaThKe.

MeTtoaoJorus. B mipoiiecce MoAaroToBKu CIEMaIMCTOB IO MPUKIATHON MaTeMaTUKe peain3y-
F0TCSI UIEU Pa3BUTUSI UX MATEMATUIECKUX TBOPYECKUX CITOCOOHOCTEH, yCUIEHNEe MOTUBALIMM K (hop-
MUPOBaHUIO TIIyOOKUX TEOPETUUECKUX U TTPAKTUUECKUX 3HAHUI 1O TUCUMITIMHAM TTPUKIIaTHO T
MaTeMaTUuKU M OCHOB TYMaHUTApHOM KyJIbTypbl. Peannzaiius aTux BaskHbIX U OCYIIECTBISIeTCS
Ha 6a3e IIMPOKOTO UCITOIB30BaAHUS MEXKIUCIUTUTMHAPHBIX HAYYHBIX CBS3€i B YCIIOBUSIX TyMaHUTa-
pU3aIy By30BCKOTO MaTeMaTHUecKoro oopasoBanust. DopMupoBaHue cTyeHTaMU QyHIaMEHTaTb-
HBIX 3HAHM 10 MPUKIIATHOM MaTeMaTUKe U OCHOB TYMaHUTAPHOM KyJIbTYphI JOCTUTAETCS pa3pa-
00TKOI1 comepkaHusT 00yuyeHMsT HA OCHOBE COBPEMEHHBIX HAyUYHBIX TOCTVKEHUI TTPUKIAIHON Ma-
TEMaTUKU, peaau3alveil HaydHO-00pa3oBaTeIbHOTO, HAyYHO-TTO3HABATEIbHOTO U T'YMaHUTapHOTO
MoTeHIMaza 00y4eH s MPUKIaTHON MaTeMaTUKe.

Pesyasratsl. [TonydyeHHbIe (hyHAaMEHTATbHbIE 3HAHUS 110 TPUKIIAAHOM MaTeMaTuKe, chopMu-
pOBaHHOE HayYHOE MHUPOBO33PEHME U T'yMaHUTapHas KyJIbTypa MO3BOJISIT BHITYCKHUKAM B CBOEH
Oyayieit mpodeccruoHaIbHOM AesITeIbHOCTH TTPOSIBISITh TYMaHHOE OTHOILIEHUE K TIPUPOJIE U OKPY-
JKaIIeMy MUDPY, IPUMEHSITh TPUPOTOOXPAHHbBIE TEXHOJIOTUM TIPY peaan3aluy MPUKIIaIHbIX UC-
cnenoBanuii. Kpome Toro, ¢ Takum 6araskoM 3HaHU BBITTYCKHUKU CITOCOOHBI CTaTh TOCTOMHBIMU
YJeHaMU COBPEMEHHOTO MH(MOPMAIIMOHHOTO O0I1IeCTBA C TYMAaHUTAPHOU KyJIBTYPOIA.

3akmouenune. B mporiecce o0yueHUs IPUKIAAHON MaTeMaTUKe, IPUMEHsISI MHHOBAlIMOHHbIE
rearornyeckre TeXHOJIOTHH, 11eJIeCO00pa3HO He TOTBKO I1aBaTh CTyeHTaM DyHIaMeHTaTbHbIe Ha-
VUYHBIE 3HAHUSI, HO ¥ TIPUBUBATh OCHOBBI T'YMaHUTApHOM KYJIBTYpHI.

KimoueBbie ciioBa: 00yuyeHUe MPUKIIATHON MaTeMaTuKe; (hyHIaMeHTaIbHbIE HayYHbIE 3HAHUS 10
MPUKJIAAHON MaTeMaTHUKe; MEXIUCIUIUTMHAPHBIC HAyYHbIE CBSI3U; CTYICHT
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