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KiroueBble cj10Ba: riceBgocdepa, mo-
BEPXHOCTb BenbTpamu, TpakTpHca, Teopust
pacueTa Ha U3rub, TeopHsi BpeMEeHHbBIX
PAacyueToB, IPOYHOCTh TICEBAOCHepUUeCcKrX
0b60/10ueK

J1A qUTHPOBAHUA

apXUTeKTOpaM U Ax3aliHepaM, HeT [IPUMepOB ee NPUMeHeHHsl B CTPOUTE/IbHOM OTpaciu.
3OT0 nmoBepxHOCTH 1ceBochepsl. s rcepgochepruuecKkoii MOBEPXHOCTH rayCccoBa
KPMBH3HA BO BCEX TOUKAX paBHa NIOCTOSIHHOMY OTpHLiaTesibHOMY unciy. [IceBpocdepa,
WY TIOBEPXHOCTDb BenbTpamu, o6pa3yeTcst BpalljeHHeM TpakTpuckL. [1cepmocdepa, umm
MOBEPXHOCTh Benbrpamu, 0bpa3syeTcs BpallleHHeM TPacCepCrca, SBOMOLIMOHUPYHOLLEro
U3 I[elTHON IMHUK. B cTaThe fjaeTcst 0630p M3BECTHBIX METOJOB pPacdeTa rncesfochepu-
yecKux 000JI0UeK 1 UCCIIeyeTC s HarpshDKeHHO-ZiehOPMHUPOBaHHOE COCTOSIHME TOHKHX
0060s10UeK BpaleHnst ¢ OIM3KIMH reOMeTpHUUeCKUMHY TTapaMeTpaMy ijisl OTIpeZieleHns
ontuMasnbHeIX popm. Kak oTMeuanochk paHee, B HayuyHO-TeXHUUECKOM UTepaType He
HalJieHbl TPUMepbI IPUMeHeHHs TIOBEepXHOCTH T1ICeBI0C(epbl B CTPOUTETBHOM OTpac/y.
Tonbko Kenner Bexep npezicraBui npumepsl rceBfocdep, peanrd3oBaHHLIX B [IPUPOJE:
TUTICOBast MOZiefb riceBocdepsl, caenanHas B. Maprunowm Iuniunrom B koHte XIX Beka.
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Introduction

The most famous modern architects can be divided
into three groups. One group seeks to build [1] high —rise
facilities while saving expensive land, especially in urban
areas. These architects believe that big — flying structures
are necessary only if they are functionally needed. In some
cases, large — flying structures have even been demolished
to make room for high —rise buildings (Moscow, Minsk,
Belarus) or for a more profitable building (The King Dome,
Seattle, USA). Another group believes that it is more
comfortable for a person to be closer to the ground [2].
They join the former President of the International Shell
Association (1966), Prof. A.M. Haas: “The people who
build the shells are advanced people; They are united
by the desire for new forms, new ways of solving
problems” [3] and, by applying scientific approaches
to analyse and design large — span structures, they have
achieved outstanding success [4]. The third group believes
that using traditional constructions (walls, columns, flat
overlays) and rectangular shapes, it is also possible to get
good results. They focus on low — cost model designs,
shapes and high — end materials.

The architects working with the shell use well
established geometry forms, which make up about 5—10 %
of the number of known surfaces, in their projects. These
are paraboloids of revolution [5], umbrella — shaped,
apple — shaped, cyclic, propeller, cylindrical shell [6],
conic shell [7], mid — surface shell in the form of conoid
and cylindroid [8], elliptical paraboloid [9], single —

striped hyperboloid [10] and some others [11]. In each
particular case, architects and design engineers chose
the most optimal shape of the shell based on functional
necessity, strength, aesthetics, etc.

However, there is such a well — known surface of
revolution, which from the 19th century to the present is
the focus of mathematicians — geometers [12—18], but
it is almost unknown to architects and designers, there are
no examples of its application in the construction industry.
This is a pseudo — sphere surface.

1. Characteristics and methods of setting
the pseudosphere

For pseudosphere surface (Figure 1, Figure 2) radius a
Gaussian curvature K = k;k- at all points equals a constant
negative number K =-1/a’

Pseudosphere, or the surface of the Beltram, is formed
by rotation of tracersis, chain line involutes r = ach(z/a),
relative to the z-axis.

The equation of the tractix is

X=asinu,z= a[cosu +In tg(u/Z)], O<u<m,

where u — involute of a catenary line, the angle between
the y-axis and tangent to tractices.
The tractix equation can also be written as

a+\/a2—r2$
r

z = aln— az —r2,
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Figure 1. One pseudosphere cavity

where the upper signs refer to the positive branch z > 0,
lower to negative z < 0 (Figure 2). The length of the
segment tangent to the tractor from the point of contact
to the point of intersection with the z-axis — constant and
equal to a > 0. The section line of the pseudosphere by
the xOy plane (edge of the pseudosphere) — is a circle of
radius a, for all other parallels r < a. The volume of one
floor of the pseudosphere: V = ma’/3.

Three forms of pseudosphere definition are known
using parametric equations [19]. For further application,
let us use the following parametric form of pseudosphere
surface setting:

x=x(r,B)=rcosf, y= Wr,f)=rsinp,
z=2z(r) =aln[(a+\/a2 -’ )/ril—\/a2 -r?,

where r is the distance from the rotation axis to the
corresponding pseudosphere point (r <a), circler=r__=a-
is the pseudosphere edge. Area between parallels r = a and
r=ro:
S =2na(a —r,).
In this case, the coefficients of the basic quadratic
forms of the surface and its main curvatures are:

a
==, F=0,B=r, L=
r

a
mat-r*
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M=0, N=— 2 7L 4 l
=V, - a s B — \/ﬁa
ava’ -r
a’—r?
k, =—
ar

Therefore, the pseudosphere is defined in curved orthogonal
contiguous coordinates. r, 3, i.e., in the lines of the main
curves. “Appeal in the middle of the XIX century. Geometers
to pseudospheric surfaces, surfaces of constant negative
curvature K = — 1/a?, it was an important step in the
development of mathematics. Pseudospherical surfaces
were of great importance for the visual interpretation
of non-Euclidean hyperbolic geometry discovered
by N.I. Lobachevsky. The subsequent development of
mathematics revealed a close connection of pseudospherical
surfaces with network theory, soliton theory, attractors,
nonlinear equations of mathematical physics, Becklund
transformations, etc.” [12].

2. Overview of pseudosphere shell analyses

The membrane theory of analysing pseudospherical
shells was realized by V.G. Rekach [20] for the case of
a homogeneous problem. The solution was made in the
form of a trigonometric series. He also determined the
tangential forces in the pseudospherical shell of constant
thickness from its self-weight, supported hinged-movably
in the normal direction in a parallel circle r = 0,5a.
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The bending theory of analysis of pseudospherical
shells in a linear formulation subject to surface symmetric
and inversely symmetric loads was considered in the work
of D. Werner [21]. The solution was made in analytical
form. A numerical example of the analysis is presented
in tabular form. To simplify the analysis, the Poisson’s
ratio was assumed to be zero.

The first attempt to make an overview of all the
works devoted to pseudospherical surfaces and shells
was made in 1998 in the article [22]. In it, in addition
to the investigations of E. Beltrami, V.G. Rekach [20],
D. Werner [21], the results obtained by B. Bhattacharya
[23] and A.P. Filin [24] are described. A.P. Filin gave
formulas for analysing the deformation parameters, the
equation of continuity of deformations and the equation
of equilibrium of the element of the pseudospherical shell
given in the curvature lines. Krawczyk J. [32] considered
infinitesimal deformations of thin elastic shells of constant
thickness.

A.A. Kalashnikov [30] determined the normal forces
in the pseudospherical shell subject to its self-weight by the
membrane theory. He then, using the SCAD FEM program,
analysed the same shell also subject to its self-weight.
Comparison of the results showed a large difference in the
values of the ring normal forces on the support. Bending
moments are mainly concentrated near the bottom support
by the type of edge effect.

In recent years, appeared the first studies on stability
of pseudospherical shells. Mikheev A.V. [25], Jasion P.,
Magnucki K. [26; 27] are working on this issue.

3. Stress-strain state of shells of revolution
with close geometric parameters

There are a number of works, for example [29], where
some criteria are put forward for assessing the optimality
of the selected design solution. V.V. Novozhilov [29]
suggested using the results of their analysis according to
the membrane theory for an approximate estimate of the
optimality of the chosen form of the thin-walled shell
of revolution. Shells with similar geometric parameters
(boom lifting and diameter of the shell at the base) were
chosen for the analysis.

Let’s follow his example. Figure 3 shows five types
of shells of revolution. The pseudospherical (Figure 3, a),

conical shell (Figure 3, b), a shell with a median surface
of revolution of the hyperbola z = % around the z-axis
(Figure 3, c), a shell with the median surface of revolution
of the asteroid (Figure 3, d) and in the form of a one-
sheeted hyperboloid of revolution (Figure 3, e).

All these surfaces are defined by parametric equations:
x = X(r, B) = rcosp, y = y(r, B) = rsin, z = (r),
where for the pseudosphere (Figure 3, a):

a++va?—r?
z=12z(r)= alnf— a? —r?,
for the cone (Figure 3, b):
rH
z=2z(r)=— ,
=

for the surface of rotation of the hyperbola z = b/x around
the axis Oz (Figure 3):
Hryr,
(rp —m)r
For the surface of the rotation of the asteroid (Figure 3, g):

z=2z(r)=

2 2
z=2z(r) = (b3 —13)3/?,
the parameter b must be found from the equality:
H = (b2/3 _ r22/3)3/2 _ (b2/3 _ r12/3)3/2,
for a single-cavity hyperboloid of revolution (Figure 3, d):
_Hﬂrz — bz
(\/le —b% - \/rzz —b?)

z=2z(r)=

where parameter b can take any value, but b < r»

All unspecified geometric parameters are shown
in Figure 3. In the same figure, the meridians of the
pseudosphere are shown by a solid line, and the meridians
of the remaining surfaces of revolution are shown by
a thin line with dots.

Shell thickness h = 0.05 cm, self-weight type
surface load g = 100 kg / m?, the radius of the base is
r; = 4 m, the radius of the hole in the apex is r, =2 m,
the boom of lifting H = 5.15 m is the same for all shells,
rn<r<n, 0<pB<2m

Under axisymmetric loading of the shells of
revolution, the surface distributed load in the direction
of the curvilinear coordinate (3 is zero (Y = 0), normal
forces (Nr, Np), shearing forces (Qy), bending moments
(Mr, MB), def%rrnations (¢r, €, Kr, kp) and displacements
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Figure 3. Five types of rotation surfaces

(W = ug, ur) are independent of the longitude angle 3, the lower edge (r = r;) and the free upper edge (r = r2).
and, in addition, Accepted E = 3.5:10* MPa, Poisson’s ratio v = 0.1.
S= QB:MrBZO, U[;ZErpZKrgzo.
Figures 4—28 present the analysis results of the shells
of revolution considered subject to self-weight by the
finite elements method with a pivotally fixed support of
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Figure 16. The Normal effort of Meridian — Hyperbole about the x-axis
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Figure 17. The Normal effort of Meridian — Asteroid about the y-axis
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Figure 18. The Normal effort of Single-cavity hyperboloid of revolution about the y-axis
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Figure 19. The bending Moment of Pseudosphere about the x-axis
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Figure 20. The bending Moment of Cone about the x-axis
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Figure 21. The bending Moment of Meridian — Hyperbole about the x-axis
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Figure 22. The bending Moment of Meridian — Asteroid about the y-axis

200 [

Figure 23. The bending Moment of Single-cavity hyperboloid of revolution about the x-axis

Figure 24. The bending Moment of Pseudosphere about the y-axis
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Figure 25. The bending Moment of Cone about the y-axis
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Figure 26. The bending Moment of Meridian — Hyperbole about the y-axis
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Figure 27. The bending-Moment of Meridian — Asteroid about the y-axis
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Figure 28. The bending-Moment of Single-cavity hyperboloid of revolution about the y-axis

4. Proposals for the use of pseudospherical
shells in architecture and the construction
industry

Figure 29. Stainless steel sculpture “Non Object’, A. Kapoor, 2008

As noted earlier, no examples of the use of the
surface of the pseudosphere in the construction industry
have been found in the scientific and technical literature.

Only Kenneth Brecher [18] presented examples of
pseudospheres implemented in nature: a gypsum model
of the pseudosphere made by V.M. Schilling (V. Martin
Schilling) at the end of the XIX century. The large-sized
plywood pseudosphere model, Mathematica, exhibited at
the Boston Science Museum, created by Charles and Ray
Eames. Stainless steel sculpture for the park made by Anish
Kapoor, 2008, fig. 26). The author— H. Sugimoto, 2004,
made the model “The surface of revolution of constant
negative curvature” and a sculpture made of aluminum
and glass by the same author “Conceptual Form 0097,
2006. Robert Le Ricolais make the “Funicular polygon of
revolution — pseudosphere” metal wire shape. All these
mathematical models serve educational purposes.

B. Bhattacharya [23] proposed to use a pseudo-
spherical shell as the foundations of reinforced concrete
chimneys. D. Werner [21] proposed to use a pseudo-
spherical thin-walled shell as the base of the tower of
the television station.

Basing his research on parametric equations of the
pseudosphere, Zh. Kaydasov [31] introduced a new type
of surfaces-multi-tube “pseudospheres” with external
cycloidal and sinusoidal corrugations. In his opinion, these
surfaces can attract the attention of architects. We take
the name of the surface — “pseudosphere” — in quotes,
because the proposed surface does not have a constant
negative Gaussian curvature.

Additional information on the application of
pseudospherical shells in building industry can be taken
in a manuscript [33].
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Conclusion

The areas of fragments of the considered surfaces of
revolution with close geometric parameters are naturally
compared with the minimum surface of revolution — the
catenoid — the area of the fragment of which is determined
by the formula:

rl
Ay =T [azln Ir + /12 — a?| + rvrz — az]rz,

where a < 1, — is the radius of the throat circumference

lying in the xOy, plane, which is determined from the
expression:

H=a (Archr—1 — Arch r—z).

a a (D)

The above two formulas must be used if the throat

circumference of the catenoid is outside the considered
fragment of the catenoid.

If the throat circumference is within the considered

surface, as in our case, then these two formulas must be

written in the following form:

a
Apar =T [azln |r + 1?2 —a?| +ryr?— az] +

r2
a

+7t[a21n Ir + 12 —a?| + r{r? — az] ,
rl

where a < r»— the radius of the throat circle lying in the

xOy, plane, which is defined from the expression:
H=a (Archr—1 + Arch T—z).

a a 2)

You can take the optimality factor over the area in

the form:

A
= >,

Acat.

Naturally, for the catenoid in this case ppow = 1.
However, for the case in question, r; =4 m, r.=2m, H
=5.15 m the formulas (1), (2) have no solution, so compare
the shells in question (Fig. 3) with a shell having a median
minimum surface with the same geometric parameters, it is
impossible. You can select the inverse task. First determine
by the formula (2) Hmax = 3.65m at a = 1.448 m for r; = 4 m,
r2 =2 m, and then pick up the other shells of revolution.

We introduce the optimality factor over the area:

Ppow

AHOB

Pros =
Ancenn
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The analyses showed that of the five shells presented
in Fig. 3, the smallest area of the median surface has a shell
with a hyperbola z = b/x as a Meridian (p = 98.25/100.5
=0.98). It is followed by a pseudosphere (p = 1), a shell
with an asteroid (p = 102.86/100.5 = 1.02) as a Meridian,
a unicellular hyperboloid of revolution (p = 103.1/100.5 =
1.03) and a cone (p = 104.1/100.5 = 1.04). The difference
in surface areas shown in Fig. 3 is very small.

Comparing the isofields of efforts and displacements
presented in Fig. 4—28, we can conclude that the
pseudospherical shell has no particular advantages in
this indicator either.

V.V. Novozhilov [29] wrote about the lack of demand
for the catenoid, i.e. the only minimum surface rotation
in construction in the near future. It will probably also be
with a pseudospherical shell.
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