Simulation of the thermal control system of nanosatellite using the loop heat pipes under the orbital flight conditions

Cover Page

Abstract


One of the key problems in the development of nanosatellites is to provide a given temperature range for the operation of the on-board computer. The constantly increasing information load leads to the need to use more advanced processors with high thermal design power (TDP). The indicated thermal regime of processors can be achieved using remote heat removal systems - miniature loop heat pipes. Using a model of nanosatellite as an example, a thermal control system with miniature loop heat pipes is designed. The simulation was carried out in the Siemens NX program in the elliptical and geostationary orbits of the Earth. The cooling schemes of the processor with a thermal power of 15 W using one and two loop heat pipes are considered. Calculations showed that the use of loop heat pipes can reduce the processor temperature to acceptable values. The anisotropy of the thermal conductivity coefficient in the reinforcement plane of the composite material of the nanosatellite case can have a significant effect on the temperature of the processor. This opens up prospects for the use of anisotropic composite materials to ensure the thermal regime of the nanosatellite.


About the authors

Yu Wang

Bauman Moscow State Technical University (National Research University of Technology)

Author for correspondence.
Email: 1363355962@qq.com
5 2-ya Baumanskayа St, bldg 1, Moscow, 105005, Russian Federation

Master Student of the Department SM-13 Rocket and Space Composite Structures

Oleg V. Denisov

Bauman Moscow State Technical University (National Research University of Technology)

Email: denisov.sm13@mail.ru
ORCID iD: 0000-0002-7320-0201
5 2-ya Baumanskayа St, bldg 1, Moscow, 105005, Russian Federation

Associate Professor of the Department SM-13 Rocket and Space Composite Structures, BMSTU, Candidate of Technical Sciences

Liliana V. Denisova

Bauman Moscow State Technical University (National Research University of Technology)

Email: u.pasika@yandex.ru
ORCID iD: 0000-0003-4748-5351
5 2-ya Baumanskayа St, bldg 1, Moscow, 105005, Russian Federation

Associate Professor of the Department SM-13 Rocket and Space Composite Structures, BMSTU, Candidate of Technical Sciences

References

  1. Danilkin AP, Kozlov VA. World trends in the development of small satellites. Economic Strategies. 2016;6:136—149. (In Russ.)
  2. Small spacecraft market research in retrospect 2002–2013 and with a forecast until 2020. Technologies and facilities of communication. Available from: www.o2consulting.ru (accessed: 15.03.2020).
  3. San Francisco: Nanosatellite and Microsatellite Market Analysis Report By Mass, By End Use (Defense & Security), By Application (Communication & Navigation, Scientific Research), And Segment Forecasts, 2019–2025. Grand View Research. URL: www.grandview research.com/industry-analysis/nanosatellite-microsatellitemarket (accessed: 15.03.2020).
  4. Petrukovich AA, Nikiforov OV. Small satellites for scientific research. Rocket and space instrumentation and information systems. 2016;3(4): 22—31. (In Russ.)
  5. Kashirin AV, Glebanova I I. Analysis of the current state of the market of nanosatellites as a disruptive innovation and the possibilities of its development in Russia. Young Scientist. 2016;7:855—867. (In Russ.)
  6. Makridenko LA, Boyarchuk KA. Microsatellites. Development trend. Market features and social significance. Electromechanics. 2005;102:12—27. (In Russ.)
  7. World’s largest data base of nanosatellites, currently more than 2500 nanosats. URL: http://nanosats.eu/ (accessed: 15.03.2020).
  8. Puig-Suari J, Turner C, Twiggs RJ. Cubesat: the development and launch support infrastructure for eighteen different satellite customers on one launch. 15thAnnual AIAA/USU Conference on Small Satellites, Logan, Utah, August 13-16, 2001. Logan, 2001. SSC01 – VIIIb-5.
  9. Khramov DA. Miniaturized satellites of Cubesat standard. Space science and technology. 2009;15(3):20—31. (In Russ.)
  10. Satellites of Cubesat standard. URL: https://cubesatkit.ru/en/cubesats.html (accessed: 15.03.2020).
  11. Market forecast for the operation of microsatellites [Electronic resource]. Atlanta: The official website of Space Works., 2017. URL: https://www.spaceworks.aero/wp-content/uploads/SpaceWorks_Nano_Microsatellite_Market_Forecast_2017.pdf (accessed: 15.03.2020).
  12. Mikhailovskii KV, Prosuntsov PV, Reznik SV. Razrabotka visokoteploprovodnih polimernih kompozitsionnih materialov dlya kosmicheskih konstruktsii [Development of high-conductivity polymer composite materials for space structures]. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering. 2012;9:98—106. (In Russ.)
  13. Nikolskii VV. Proektirovanie sverhmalih kosmicheskih apparatov [Designing of ultra-small spacecrafts]: training manual. Saint Petersburg: Baltic State Technical University; 2012. (In Russ.)
  14. Chebotarev VE, Kosenko VE. Osnovi proektirovaniya kosmicheskih apparatov informatsionnogo obespecheniya [The basics of designing a spacecraft information support]: tutorial. Krasnoyarsk; 2011. (In Russ.)
  15. Modern mobile technology. URL: https://www.notebook-center.ru/processor_tdp.html (accessed: 15.03.2020).
  16. Dunn PD, Reay DA. Heat Pipes.Pergamon Press, Oxford – New York – Toornto – Sydney – Paris – Braunschweig; 1976.
  17. Maydanik YuF. Dostizheniya i perspektivi razvitiya konturnih teplovih trub [Achievements and development prospects of loop heat pipes]. Proc. of 4-th Conf. on Heat Mass Transfer, Moscow; 2006. р. 84—92. (In Russ.)
  18. Maydanik YuF. Konturnie teplovie trubi – visokoeffektivnie teploperedauyshie ustroistva dlya ohlazhdeniya elektroniki [Loop Heat Pipes: highlyefficient heat transfer devices for cooling systems of electronics]. Journal «Electronics: Science, Technology, Business». 2017;6:122—130. (In Russ.)
  19. Maydanik YuF, Vershinin SV, Chernysheva MA. Razrabotka i issledovanie ammiachnoi miniaturnoi konturnoi teplovoi trubi pri razlichnih vneshnih uslovieah [Development and Research of Ammonia Miniature Loop Heat Pipe under Various External Conditions]. Journal of Thermal Processes in Engineering. 2016;7:312—320. (In Russ.)
  20. Goncharov KA, Dvirnyi VV. Experience of development and application of heat pipes for space vehicles at S.A. Lavochkin’s scientific-industrial enterprise. Siberian Journal of Science and Technology. 2018;1(18):123—127. (In Russ.)
  21. Wang Yu, Denisov OV, Denisova LV. Simulation of cooling of a processor in nanosatellite using the loop heat pipes. RUDN Journal of Engineering Researches. 2019;20(3):211—219. http://dx.doi.org/10.22363/2312-8143- 2019-20-3-211-219. (In Russ.)
  22. Reznik SV, Prosuntsov PV, Denisov OV, Petrov NM, Shulyakovsky AV, Denisova LV. Raschetno-eksperimental’noe opredelenie teploprovodnosti ugleplastika v ploskosti armirovaniya na osnove beskontaktnogo izmereniya temperature [Numerical and experimental estimation of heat conductivity of carbon plastic in a reinforcement plane on the basis of contactless measurement of temperature]. Journal of Thermal Processes in Engineering. 2016;12:557—563. (In Russ.)
  23. Reznik SV, Prosuntsov PV, Denisov OV, Petrov NM, Vonheong Lee. Nano-satellite body composite material thermal conductivity determination computational and theoretical method. RUDN Journal of Engineering Researches. 2017;18(3):345—352. http://dx.doi.org/10.22363/2312-8143-2017-18-3-345-352. (In Russ.)

Statistics

Views

Abstract - 130

PDF (Russian) - 36

Cited-By


PlumX


Copyright (c) 2021 Wang Y., Denisov O.V., Denisova L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies