Influence of speed distribution in a rounded flow on the character of slopes erosion

Cover Page


One of the most important issues of river hydraulics is the movement of water and the formation of a channel in a stream that has a non-straight-line outline in the plan. Under natural conditions for rivers characteristic winding shape in the plan. The curvature of the jet occurs when the flow is divided into sleeves, at the inflow into the river, the confluence of flows, etc. Therefore, the study of channel processes in rivers is impossible without knowledge of the flow patterns at the curve of the channel. When designing hydraulic structures, including bridge crossings on the meandering sections of rivers, one should know the features of the dynamics of the channel in the sections of the flow turning. In winter, such areas may be narrowed due to the freezing of the channel, and during the period of ice thawing they are clogged with ice fragments. The narrowing of the canal causes an increase in the Reynolds number and a redistribution of velocity diagrams in the area under consideration, which causes a change in the erosion pattern. In laboratory conditions, the nature of the distribution of velocities and the formation of vortices on the installation, creating a rounded flow. It is shown that, at critical Reynolds numbers, a vortex countercurrent occurs in the rounded flow at the inner shore. The impact of this velocity distribution on the erosion pattern of the various slopes of the rounded flow was analyzed.

About the authors

O. Ya. Maslikova

Water Problems Institute of Russian Academy of Sciences (IWP RAS)

Author for correspondence.
3 Gubkina St., Moscow, 119333, Russian Federation

Senior Researcher of Channel Flow Dynamics and Ice Thermal Conditions Laboratory, Candidate of Technical Sciences

I. I. Gritsuk

Water Problems Institute of Russian Academy of Sciences (IWP RAS); Peoples’ Friendship University of Russia (RUDN University); Moscow Automobile and Road Construction State Technical University (MADI)

3 Gubkina St., Moscow, 119333, Russian Federation; 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation; 64 Leningradsky prospect, Moscow, 125319, Russian Federation

Associate Professor of Department of Construction, Academy of Engineering; Senior Researcher, Candidate of Technical Sciences; Channel Flow Dynamics and Ice Thermal Conditions Laboratory; Associate Professor, Department of Hydraulic, Candidate of Technical Sciences

D. N. Ionov

Water Problems Institute of Russian Academy of Sciences (IWP RAS)

3 Gubkina St., Moscow, 119333, Russian Federation

Senior Researcher of Channel Flow Dynamics and Ice Thermal Conditions Laboratory, Candidate of Technical Sciences

V. K. Debolskiy

Water Problems Institute of Russian Academy of Sciences (IWP RAS)

3 Gubkina St., Moscow, 119333, Russian Federation

Head of Channel Flow Dynamics and Ice Thermal Conditions Laboratory, Doctor of Technical Sciences, Professor


  1. Ikeda S, Parker G, Sawai K. Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics. 1981;112: 363-377.
  2. Ikeda S, Nishimura T. Flow and bed profile in meandering sand-silt rivers. Journal of Hydraulic Engineering. 1986;112(7): 562-579.
  3. Osman MA, Thorne CR. Riverbank stability analysis. I: Theory. Journal of Hydraulic Engineering. 1988;114(2): 134-150.
  4. Parker G, Andrews ED. On the time development of meander bends. Journal of Fluid Mechanics. 1986;162: 139-156.
  5. Sun T, Meakin P, Jossang T, Schwarz K. A simulation model for meandering rivers. Water Resources Research. 1996;32: 2937-2954.
  6. Lancaster ST, Bras RL. A simple model of river meandering and its comparison to natural channels. Hydrological Processes. 2002;16(1): 1-26.
  7. Kuntjoro K, Bisri M, Masrevaniah A, Suharyanto A. Modeling of discharge fluctuation influence on river meandering geometry change. International Journal of Academic Research. Part A. 2012;4(6): 189-196.
  8. Duan JG, Julien PY. Numerical simulation of the inception of channel meandering. Earth Surface Processes and Landforms. 2005;30: 1093-1110.
  9. Kuntjoro K, Didik Harijanto. The Movement of the Regularly River Meanders on Constant Discharge. International Journal of Civil Engineering and Technology. 2018;9(6): 619-629.
  10. Engelund F. Flow and bed topography in channel bend. Journal of Hydraulic Division. 1974;100(11): 1631-1648.
  11. Crosato A. Simulation of meandering river processes. Communications on Hydraulic and Geotechnical Engineering. Delft, The Netherlands; 1990.
  12. Duan JG. Simulation of flow and mass dispersion in meandering channels. Journal of Hydraulic Engineering. 2004;130(10): 964-976.
  13. Julien PY, Anthony DJ. Bedload motion and grain sorting in a meandering stream. Journal of Hydraulic Research. 2002;40(2): 125-133.
  14. Olsen NRB. Three-dimensional CFD modelling of selfforming meandering channel. Journal of Hydraulic Engineering. 2003;129(5): 366-372.
  15. Sidorchuk AYu, Panin AV, Borisova OK. Pozdnelednikovye paleorusla rek Zapadnoy Sibiri [Late glacial paleorusla rivers of Western Siberia]. Izvestiya Rossiyskoy akademii nauk. Seriya geograficheskaya. 2008;(2): 67-75. (In Russ.)
  16. Sidorchuk AYu, Panin AV, Borisova OK. Rechnoy stok na Vostochno-Yevropeyskoy ravnine za poslednie 20 tysyach let i problema izmeneniya urovney yuzhnykh morey [River flow on the East European Plain over the past 20 thousand years and the problem of changing the levels of the southern seas]. Gidrologicheskie izmeneniya. Sb. 145. Moscow: Kodeks; 2018. p. 144-168. (In Russ.)
  17. Sidorchuk AYu, Panin AV, Borisova OK. Snizhenie stoka rek ravnin Severnoy Yevrazii v optimum golotsena [Reducing the flow of the rivers of the plains of Northern Eurasia in the optimum holocene]. Vodnye resursy. 2012;39(1): 40-53. (In Russ.)
  18. Zholudev DM, Plotnikov AN, Slabozhanin GD. Izuchenie protsessov svobodnogo meandrirovaniya rek [Study of the processes of free meandering of rivers]. Izbrannye doklady 64-y universitetskoy nauchno-tekhnicheskoy konferentsii studentov i molodykh uchenykh. Tom. gos. arkhit.-stroit. unta Publ.; 2018. p. 790-792. (In Russ.)
  19. Maslikova OYa. Deformatsii merzlykh sklonov rek na povorote rusla pri nalichii dvizhushchikhsya sudov [Deformations of frozen river slopes at the turn of the channel in the presence of moving vessels]. Stroitelstvo: nauka i obrazovanie. 2018;8(3): 54-66. (In Russ.)
  20. Lelyavskiy NS. O rechnykh techeniyakh i formirovanii rechnogo rusla [On the river currents and the formation of the river bed]. Trudy 2-go Sezda inzhenerov-gidrotekhnikov v 1893 g. Saint Petersburg; 1893. (Voprosy gidrotekhniki svobodnykh rek. Moscow: Rechizdat Publ.; 1948. p. 18- 136.) (In Russ.)
  21. Davydov LK, Dmitrieva AP, Konkina NG. Obshchaya gidrologiya [General hydrology]. Leningrad: Gidrometeoizdat; 1973. (In Russ.)
  22. Losievskiy AI. Laboratornye issledovaniya protsessov obrazovaniya perekatov [Laboratory studies of roll formation processes]. Trudy TsNIIVT. 1934;36. (In Russ.)
  23. Velikanov MA. Gidrologiya sushi [Land hydrology]. Leningrad: Gidrometeoizdat Publ.; 1974. (In Russ.)
  24. Grishanin K.V. Osnovy dinamiki ruslovykh potokov [Basics of channel flow dynamics]. Moscow: Transport Publ.; 1990. (In Russ.)
  25. Rozovskiy IL. Dvizhenie vody na povorote otkrytogo rusla [The movement of water at the turn of an open channel]. Kiev: AN USSSR Publ.; 1957 (In Russ.)
  26. Monin AS, Yaglom AM. Statisticheskaya gidromekhanika. Mekhanika turbulentnosti. Chast I [Statistical hydromechanics. Mechanics of turbulence. Part I]. Moscow: Nauka Publ.; 1965. (In Russ.)
  27. Melnikova ON, Petrov VP, Maslikova OYa. Eksperimentalnoe issledovanie massoobmena v pridonnom sloe otkrytogo potoka so statsionarnymi volnami [Experimental study of mass transfer in the bottom layer of an open flow with stationary waves]. Vestnik MGU. Seriya 3: Fizika. Astronomiya. 1994;35(5): 59-66. (In Russ.)
  28. Debolskiy VK et al. Dinamika ruslovykh potokov i litodinamika pribrezhnoy zony moray [Dynamics of channel flows and lithodynamics of the coastal zone of the sea]. Moscow: Nauka Publ.; 1994. (In Russ.)



Abstract - 373

PDF (Russian) - 238



Copyright (c) 2019 Maslikova O.Y., Gritsuk I.I., Ionov D.N., Debolskiy V.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies