Special aspects of catagenetic sulfate accumulation in Permian sedimentary sequences of Central Russia

Cover Page

Abstract


The scope and the role of the secondary (catagenetic) processes in sedimentary-rock formation belong to the category of incompletely resolved and, therefore, the urgent problems of lithological science. The purpose of this work was to show, by means of stadium analysis, the huge “hidden” potential of catagenetic processes in the transformation of the mineral composition of sedimentary strata on the example of sulphate complexes. Boundary clay and carbonate sediments of Urzhumskiy and Sakmarskiy stage of Western limit of the pre-Ural trough were selected as the objects of study. It was found that their lithological appearance has been largely shaped by secondary (diaand catagenetic) processes of sulfate mineralization. And, if the first is reflected in the development of scattered concretionary nodules of gypsum, the latter manifested in large-scale metasomatism with the formation of large anhydrite-gypsum and gypsum-anhydrite lens and tabular bodies, stretching for hundreds of meters. It’s possible that metasomatic solutions were very reactive and moved with underground waters. Those solutions were as aggressive as lateritic weathering, and replaced not only the carbonates, but clay and ferrous minerals as well as quartz and feldspar detritus. All of this points to the high alkalinity and to the reducing atmosphere of sulphate of metasomatic solutions.


Введение При проведении инженерно-геологических изысканий на границе Владимирской и Нижегородской областей через долину р. Клязьмы пробурен профиль длиной в 9,5 км из 21 буровой скважины. Помимо четвертичных осадков, скважинами до глубины 100 м вскрываются пермские отложения, которые образуют «броский» и надолго запоминающийся разрез из двух комплексов: верхнего - ярко-красного терригенно-глинистого и нижнего - светло-серого карбонатносульфатного. По данным геологического картирования [1], первый принадлежит к уржумскому, а второй - к сакмарскому и, возможно, ассельскому ярусам. Верхний (уржумский?) комплекс относят к континентальным образованиям красноцветной формации, которые накапливались в засолоняющихся либо пресных водоемах. Для него характерны ярко окрашенные плохо отмученные глины с тонкими невыдержанными прослоями олигомиктовых песчаников и алевролитов с базальным глинистым цементом. Для пород типичны текстуры волнового взмучивания с причудливо-неравномерным распределением обломочных и глинистых компонентов. Состав глинистой части - хлорит-гидрослюдистый с обильной примесью дисперсного доломита. Заключенные в ней зерна кварца остроугольной и угловатой формы, с редкими обломками плагиоклазов, калиевых шпатов, кремнистых пород и микрокварцитов. В качестве акцессориев присутствуют циркон, турмалин, гранат, сфен, апатит, глауконит, магнетит и ильменит. Более 90 % зерен относятся к гранулометрическим классам < 0,1 мм. В основном они концентрируются пятнами, гнездами, а чаще образуют вокруг глинистых участков изогнутые прерывистые полоски и цепочки, формируя тем самым рисунок «взмученных» волнением осадков. Во многом это впечатление усиливается от вытянутых чешуек слюд, которые ориентированы в разных направлениях. Также для пород типичны ромбоэдры вторичного доломита (0,05 мм). Чаще всего они встречаются среди скоплений песчаных зерен, где глинистая ткань цемента наиболее проницаема для поровых растворов. Не менее показательны прожилки, гнезда и порфиробласты катагенетического доломита - самые последние новообразования в рассмотренных отложениях. Наконец, отмечаются доломитизированные перекристаллизованные биогенные остатки, представленные планктонными фораминиферами, копролитовыми сгустками, спикулами губок и мелкими обломками костей рыб. Мощность красноцветов по скважинам варьирует от 12,5 до 43 м, составляя в среднем около 20 м. Нижний (сакмарский?) карбонатно-сульфатный комплекс объединяет лагунно-морские доломиты, гипсы и ангидриты с линзовидными включениями и гнездами ярко-красной глины. Породы неравномерно переслаиваются, невыдержанны по простиранию и в большинстве случаев характеризуются пятнисто-брекчиевидными и полосчато-узорчатыми текстурами из перекристаллизованных доломитовых и сульфатных минеральных фаз. С генетических позиций особый интерес вызывают доломиты, поскольку у них выявляются признаки вторичного происхождения по биогенно-детритовым известнякам. В шлифах они сложены тонко-мелкозернистым доломитовым агрегатом с теневыми реликтовыми структурами биогенных остатков, которые подверглись интенсивной грануляции. Несмотря на это, легко узнаются очертания многочисленных раковин фораминифер, реже - детрит гастропод, двустворок, члеников криноидей, онколитов, а также фосфатные частицы костей рыб. Фактический материал, методы и результаты исследований Излагаемые ниже материалы базируются на данных детального микроскопического изучения более полусотни проб. Последние отбирались послойно из керна скважин, так, чтобы проследить по разрезу и простиранию характер изменения литологических особенностей отложений. Результаты выполненных исследований стали основой для проведения стадиального анализа минералообразования, методика которого описана во многих публикациях, и в частности в работе О.В. Япаскурта [2]. При описании шлифов использовался поляризационный микроскоп марки ПОЛАМ Л-213М. Принципиально важным для отложений обоих комплексов является развитие ангидритово-гипсовой минерализации. Обращает внимание ассиметричное ее распределение относительно их контакта. Наиболее масштабно она проявлена в прикровельной части сакмарского комплекса, где представлена невыдержанными линзои пластообразными телами мощностью 15-20 м. Напротив, вверх по разрезу уржумского комплекса интенсивность минерализации стремительно падает, и ее присутствие ощущается только в виде редких тонких гипсовых прожилков. Важно подчеркнуть, что характер выделения сульфатных минералов контролируется литологическим составом пород. В глинах седиментационно-диагенетические процессы сульфатизации проявились в формировании конкреционных стяжений гипса. По форме они обычно округлые и линзовидно-уплощенные. Размер их от долей до нескольких мм. Соприкасаясь и срастаясь друг с другом образуют гипсовые линзовидные конкреционные тела, макроскопически видимые в керне скважин. В шлифах границы микростяжений резко выражены и «обтекаются» глинистыми микрослойками. В породе они располагаются, согласуясь с текстурными особенностями и строением глинистой матрицы. Сложены слабо раскристаллизованным гипсовым агрегатом, который большей частью перекристаллизован в довольно крупные таблитчатые кристаллы. Последние вписываются в контуры конкреционных стяжений и не нарушают их характерные формы. Нередко в выделениях гипса отмечаются корродированные частицы глинистой матрицы, что доказывает участие метасоматоза в конкреционном процессе. Завершение его фиксируется по развитию гипсовых прожилков, пересекающих конкреции и окружающую их глинистую матрицу. Появление прожилков указывает, что отложения из водонасыщенных и слабо консолидированных осадков превратились в литифицированные породы и стали развиваться в условиях катагенеза. Помимо конкреции, еще одной формой выделения гипса в глинах являются метакристаллы. Как и прожилки, они формировались под воздействием катагенетических процессов и чаще всего отмечаются в участках, обедненных терригенной примесью. Здесь гипсовые кристаллы столбчато-шестоватого и усеченнопризматического облика прорастают карбонатно-глинистую матрицу, захватывая растущими гранями ее минеральные частицы и отдельные мелкие фрагменты (рис. 1). Наблюдаются все стадии роста метакристаллов - от их зарождения до крупных (2-5 мм) индивидов с хорошо выраженными кристаллографическими ограничениями. По-видимому, максимальной фазой их развития следует считать формирование из их сростков друз-розеток. Помимо этого встречаются также скелетные формы кристаллов и двойники типа «ласточкиного хвоста». Внутреннее строение кристаллов сложное, часто со следами деформаций и дробления (рис. 2). Их присутствие подтверждает представление об образовании рассматриваемых выделений гипса под воздействием внешних нагрузок, т.е. в постдиагенетическую стадию формирования пород. Рис. 1. Формирующийся метакристалл гипса с захваченными фрагментами окружающей алеврито-глинистой массы. Уржумский ярус. Ув. 25х, ник. II [Figure 1. Emerging gypsum metacrystal with the captured fragments of surrounding aleurite-clay mass. Urjumski stage] Рис. 2. «Залеченные» зоны дробления в метакристалле гипса. Ув.110х, ник + [Figure 2. “Healed” zones of crushing in gypsum metacrystal] В песчаниках и алевролитах гипсовая минерализация отмечается в форме вторичного пойкилитового цемента. Последний развит неравномерно. Он пятнами проявлен среди алевро-песчаного материала и полностью затухает в участках скопления глинистого вещества, которые плохо проницаемы для растворов. Легко устанавливается вторичный характер цемента. На первых этапах замещается глинистое вещество и присутствующие в нем дисперсные доломитовые частицы. Затем становятся неустойчивыми вторичные доломитовые ромбоэдры. И, наконец, гипсовой коррозии подвергаются полевые шпаты и кварц. В результате, в шлифах возникает мозаика из волокнисто-крупнозернистого гипса, пойкилитово включающего разрозненные обломочные зерна. В керне скважин такие участки проявляются в виде зон осветления, хорошо видимых на фоне буровато-красных пород. Как и в случае с конкреционными стяжениями в глинах, время развития диагенетической пойкилитовой цементации в песчаниках и алевролитах заканчивается появлением гипсовых прожилков - показателя начала катагенетической фазы формирования пород. Завершающим этапом огипсования вскрытых скважинами уржумских отложений является развитие агрегатов гипса в виде участков метасоматического замещения. Оценить на микроскопическом уровне по отдельным пробам масштабность этого процесса достаточно сложно, но глубина изменения минералого-химического состава пород дает основание предполагать весьма мощное выражение метасоматоза в пределах толщи. В шлифах участки метасоматоза наблюдаются в виде крупных полей с заливообразными извилистыми границами (рис. 3). По периферии зерен кристаллы мелкие, а из-за пылевидных частиц - мутные. К центру участков они разрастаются и становятся светлыми и чистыми. Другой особенностью, указывающей на вторичную природу гипсовых выделений, служат реликтовые включения окружающей минеральной массы. Большей частью они группируются в приконтактовой зоне, где представлены корродированными разрозненными обломочными зернами, захваченными мелкими породными фрагментами, а также оставшимися от их замещения «теневыми» структурами (рис. 3). Особенно агрессивно сульфатный метасоматоз проявился в сакмарском комплексе, где вторичная природа гипсовой и ангидритовой минерализации устанавливается по включениям реликтовой примеси. Судя по ней, замещались микрозернистые доломиты и тонко отмученные глины. Сохранившиеся от них минеральные частицы количественно не превышают первых процентов. В основном это пленки и тонкие линзочки на стыках крупных зерен и вдоль граничных поверхностей структурных неоднородностей пород. Намечаются два механизма замещения. Первый связан с зонами трещиноватости, где гипс разрастался поперек трещин по типу «гребенок» субпараллельных кристаллитов (рис. 4). Второй механизм проявлялся в развитии пойкилитовых структур и формировании крупных ксеноморфных зерен, которые захватывали целые фрагменты окружающей минеральной массы (рис. 5). С гипсом тесно связаны выделения ангидрита. Их взаимоотношение сложное и противоречивое. Наблюдаются как обособления гипса с ангидритовыми включениями, так и обратная картина, когда структурные признаки первого минерала наследуются ангидритом. В последнем случае ярким подтверждением сказанного служат крупные (до 2-4 мм) монокристаллические псевдоморфозы по «лапчатым» обособлениям гипса с пойкилитово захваченными корродированными зернами доломита. Сохраняются не только отдельные зерна, но и целые фрагменты метасоматически замещенных доломитовых пород с биогенными структурами (рис. 5). Рис. 3. Участки гипсового метасоматоза в уржумских алевро-песчаных отложениях. Ув. 25х, ник. II. Наблюдаются остаточные фрагменты (пятна) замещенного терригенного и глинистого вещества среди гипсового агрегата с гранои гетеробластовой структурами [Figure 3. Areas of gypsum metasomatosis in Udjumskii aleurite-sand rocks. There are residual fragments (spots) of the replaced terrigenic and clay substance among the gypsum aggregate with granoand heteroblastic structures] Рис. 4. Катагенетическое огипсование пород через развитие прожилков из «гребенок» субпараллельных кристаллитов. Сакмарский ярус. Рис. 8а. Ув. 50х, ник. II [Figure 4. Catagenetic replacement of rocks by gypsum by development of veinlets of “combs” of subparallel crystallites. Sakmarskii stage] Рис. 5. Псевдоморфозы по гипсу ангидрита (светлые поля) с сохранившимися биоморфными структурами микрозернистого доломита (серые выделения). Ув. 100х, ник II [Figure 5. Anhydrite pseudomorphs in gypsum (bright fields) with preserved biomorphic structures of grained dolomite (grey fields). Sakmarskii stage] Рис. 6. Две формы катагенетического ангидрита: ранняя - игольчатая (серые поля), более поздняя - мелкочешуйчатая (прожилковая). Сакмарский ярус. Ув. 50х, ник. + [Figure 6. Two forms of catagenetic anhydrite: early form - needlelike (grey parts), recent form - scalylike (in veins). Sakmarskii stage] Другая форма псевдоморфного развития ангидрита представлена сноповидными короткоигольчатыми кристаллитами, заполняющими внутреннее пространство выделений дегидратированного гипса. Характерны бурые налеты и остаточные микровключения доломитовых частиц. Наконец, отмечена ангидритовая фаза, непосредственно не связанная с дегидратацией гипса. Она представлена «чистыми» мелкочешуйчатыми агрегатами, которые образуют среди ангидритовых псевдоморфоз прожилково-пятнистые обособления (рис. 6). Тем самым фиксируются наиболее поздние катагенетические процессы растворения и переотложения ангидритового вещества в пустотах и трещинах сокращающегося в объеме гипса при его обезвоживании и трансформации в ангидрит. Заключение По всему вскрытому уржумско-сакмарскому разрезу устанавливается вторичная природа сульфатных образований, связанных с седиментационно-диагенетическим и катагенетическим этапами развития ангидрит-гипсовой минерализации. Первый этап не играл ведущей роли при становлении пород, поскольку засолоненность палеовод бассейна и хемоседиментация гипса находились, скорее всего, в зачаточной форме. Об этом свидетельствует довольно разнообразное сообщество выявленных биогенных остатков среди отложений обоих комплексов. По этим причинам минерализация гипса проявила себя слабо и отмечается лишь в виде диагенетических послойных конкреционных стяжений. Породообразующее значение сульфатная минерализация приобрела в катагенезе при массовом метасоматозе карбонатных, глинистых и песчаных отложений. Нельзя сказать, что данное заключение является чем-то новым и необычным. По крайней мере, о возможности этого процесса в свое время писал еще А.Е. Ферсман [3], связывая его с воздействием на породы высокоминерализованных тяжелых рассолов, гравитационно просачивающихся из лежащих выше по разрезу захороненных соленосных толщ. Экспериментально реальность таких представлений была подтверждена работами М.Г. Валяшко и его сотрудников [4]. В современной литературе за подобным механизмом минералообразования закрепился термин гравитационно-рассольного катагенеза [5]. Наверное, наиболее ярко глобальность этого явления для регионов развития эвапоритовых формаций была показана В.М. Махначом [6]. В отличие от таких многократно описанных случаев для рассматриваемого региона бассейна р. Клязьма ситуация выглядит нестандартно. Необычность ее сводится к следующим двум моментам. Во-первых, в разрезе отсутствуют залежи солей, способных генерировать сульфатсодержащие рассолы и создавать гравитационный фильтрационный эффект для просачивания их в подстилающие отложения. Во-вторых, масштаб вторичной сульфатизации многократно превышает известные случаи. Ведь речь здесь идет уже не о прожилковой и гнездообразной минерализации, а линзои пластообразных телах, тяготеющих к контакту существенно глинистого уржумского и карбонатного сакмарского комплексов. Правомерен вопрос: чем обусловлены вышеотмеченные особенности? Очевидно, ключом для решения проблемы могут стать представления об уржумских отложениях как своеобразном водоупоре и геохимическом барьере для движущихся флюидов-растворов. Если это так, то именно «глинистую покрышку» следует рассматривать в качестве главной причины массовой катагенетической сульфатизации залегающих под ней доломитизированных биогенных известняков и глинистых пелитоморфных доломитов. В свете сказанного необходимо отметить еще один момент - источник метасоматических растворов. Учитывая катагенетическую природу сульфатизации, весьма привлекательной становится модель элизионного катагенеза. Принимая ее за основу, логично связать образование изученных сульфатных пород с рассолами эвапоритовых толщ Предуральского прогиба, уплотнение которых сопровождалось миграцией продуктивных растворов к его краевым частям. Поражает реакционная способность сульфатного метасоматоза, которая не уступает по своей агрессивности латеритному выветриванию. Процесс буквально «стирает» все предыдущие минеральные фазы, включая терригенный кварц и акцессорные минералы. Из сказанного привлекает внимание высокая подвижность малорастворимых оксидов Si и Al. Следовательно, метасоматоз протекал на фоне сильно щелочной среды с рН > 10. Только при таких условиях возможна активная совместная миграция кремния и алюминия [7]. С другой стороны, при огипсовании также происходит осветление пород и удаляются гидроокислы железа. Это, в свою очередь, указывает на восстановительный характер метасоматических растворов.

Alexey F Georgievskiy

Peoples Friendship University of Russia (RUDN University)

Author for correspondence.
Email: georgievskiy_af@rudn.university
SPIN-code: 1308-9195
6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

Doctor of Geology and Mineralogy, Associate Professor of the Department of Mineral Developing and Oil & Gas Engineering of the Engineering Academy

Viktoriya M Bugina

Peoples Friendship University of Russia (RUDN University)

Email: bugina_vm@rudn.university
SPIN-code: 8410-3861
6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

PhD in Geology and Mineralogy, Associate Professor of the Department of Mineral Developing and Oil & Gas Engineering of the Engineering Academy

  • Gosudarstvennaja geologicheskaja karta Rossijskoj Federacii. Masshtab 1:1 000 000 (novaja serija) [State geological map of the Russian Federation. Scale 1:1 000 000]. List O-37,(38) (Nizhnij Novgorod). Saint Petersburg: VSEGEI Publ., 1999.
  • Yapaskurt O.V. Stadium analysis of sedimentary process. Lithology and mineral resources, (4), 2008, 364—376. (In Russ.)
  • Fersman A.E. Geohimija Rossii [Geochemistry of Russia]. Petrograd: Teh.-сhеm. izdat. Publ., 1922. 214.
  • Valjashko M.G., Polivanova A.I., Zherebcova I.K. Jeksperimental’noe issledovanije peremeshhenija rastvorov raznogo udel’nogo vesa v poristyh porodah v svjazi s vertikal’noj gidrohimicheskoj zonal’nost’ju [Experimental study of different unit weight solutions’ movement in porous rocks and their dependence of vertical hydrochemical zonality]. Geochemistry, 1963, (3), 312—326. (In Russ.)
  • Holodov V.N. Novoe v poznanii katageneza [New facts in the knowledge of catagenesis]. Lithology and mineral resources, 1982, 3, 3—22. (In Russ.)
  • Mahnach A.A. O global’nom razvitii galogennoj katageneticheskoj mineralizacii osadochnyh porod pod jevaporitovymi formacijami [About the global development of halogen catagenetic mineralization of sedimentary rocks under evaporite formations]. Lithology and mineral resources, 1982, (3), 59—66. (In Russ.)
  • Bezborodov R.S. Kratkij kurs litologii [Brief Lithology course]. Moscow: Patrice Lumumba University, 1989, 314. (In Russ.)

Views

Abstract - 116

PDF (Russian) - 64

PlumX


Copyright (c) 2018 Georgievskiy A.F., Bugina V.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.