RELIABILITY OF CONSTRUCTING RESIDENTIAL BUILDINGS USING STAY-IN-PLACE CEMENT BOARD FORMING TECHNOLOGY

Cover Page

Abstract


Using stay-in-place cement board forms for construction of residential buildings of reinforced concrete is one of the effective methods of modern construction. In the process of production of construction materials despite tight control some defects in structures may form. In this regard, the reliability assessment of the construction technology in terms of quality is an essential task. To assess the reliability of the construction technology the methods of visual examination of building structures and instrumental measurement of detected defects were used. Mathematical processing of the quantitative characteristics of the qualitative parameters is performed by methods of mathematical statistics with the confidence α = 0,95. The study established the most common defects of building structures erected with the stay-in-place cement board forms, as well as identified the cause-and-effect relationships of their formation. The probability of simultaneous failure of the task by the quality parameters of at least one characteristic varies from Qmin = 0,082 to Qmax = 0,161 with the average value Qcp = 0,119, the admissible value specified in building code being Qmin = 0,2. Overall, the technology of constructing reinforced concrete residential buildings with stay-in-place cement board forms corresponds to the level of reliability according to the quality parameters set by the project documentation.


About the authors

Alexander P Svintsov

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: svintsovap@rambler.ru
6, Miklukho-Maklaya str., Moscow, 117198, Russian Federation

Professor, Doctor of Science, Professor of the Department of Architecture & Civil Engineering, Academy of Engineering, Peoples' Friendship University of Russia (RUDN University). Research interests: theory and practice of organizational-technological and economic solutions in construction and engineering equipment.

Arseny Romanovich Koen

LLc “UK Genstroy”

Email: Arkoen@if-capital.ru
7, Malaya Kalitnikovskaya str., Moscow, 109147, Russian Federation

Candidate of Science, CEO LLc “UK Genstroy”. Research interests: construction management.

Zurab Alievich Bisiev

LLc “Inter Groupр”

Email: ZABisiev@if-capital.ru
13, Moscow highway, l. A, Saint-Petersburg, 196158, Russian Federation

Founder & CEO LLc “InterGroupр”. Research interests: construction management

Ibrahim Yusupovich Arsamakov

LLc “Inter Groupр”

Email: IYArsamakov@if-capital.ru
13, Moscow highway, l. A, Saint-Petersburg, 196158, Russian Federation

Deputy CEO LLc “InterGroupр”. Research interests: construction management.

References

  1. Krawczyńska-Piechna A. Comprehensive Approach to Efficient Planning of Formwork Utilization on the Construction Site. Procedia Engineering. 2017. V. 182. P. 366—372. https://doi.org/10.1016/j. proeng.2017.03.114
  2. Abramjan S.G., Ahmedov A.M., Halilov V.S., Umancev D.A. Razvitie monolitnogo stroitel’stva i sovremennye opalubochnye sistemy. Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture. 2014. No. 36 (55). P. 231—239. (in Russ.)
  3. Rjazanova G.N., Kamburg V.G. Modelirovanie tekhnologii vozvedeniya samonesushchikh ograzhdayushchikh konstruktsii iz krupnoporistogo keramzitobetona v nes”emnoi opalubke iz tsementno-struzhechnykh plit. Regional’naja arhitektura i stroitel’stvo. 2009. No. 1. P. 74—78. (in Russ.)
  4. Rjazanova G.N., Baranova T.I., Tkachenko A.N. Investitsionno privlekatel’nye tekhnologii vozvedeniya teploeffektivnoi ograzhdayushchei konstruktsii v nes”emnoi opalubke. Nauchnyj zhurnal stroitel’stva i arhitektury. 2008. No. 2. P. 86—93. (in Russ.)
  5. Rjazanova G.N., Kamburg V.G. Sovershenstvovanie tekhnologii vozvedeniya ograzhdayushchikh konstruktsii v nes”emnoi opalubke. Penza: PGUAS Publ., 2010. 167 p. (in Russ.)
  6. Scott B., Wahab N., Al-Mayah A., Soudki K.A. Effect of stay-in-place PVC formwork panel geometry on flexural behavior of reinforced concrete walls. Structures. 2016. V. 5. P. 123—130.
  7. Saharov G.P., Strel’bickij V.P. Materialy i tehnologii v malojetazhnom stroitel’stve. Construction materials, the equipment, technologies of XXI century. 2012. No. 5 (160). P. 22—27. (in Russ.)
  8. Devjatnikova L.A., Emel’janova E.G., Kuz’menkov A.A., Simonova A.A. Issledovanie tehnikojekonomicheskih parametrov pri vybore tehnologii vozvedenija ograzhdajushhih konstrukcij individual’nyh zhilyh domov. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta. 2015. No. 4 (149). P. 82—89. (in Russ.)
  9. Andreev A.A., Kolesnikov G.N. Sovershenstvovanie tehnologii ispol’zovanija othodov lesopil’nyh predprijatij v proizvodstve drevesno-cementnyh materialov dlja malojetazhnogo stroitel’stva. Fundamental’nye issledovanija. 2014. No. 68 (6). P. 1139—1143. (in Russ.)
  10. Huang Bo-Tao, Li Qing-Hua, Xu Shi-Lang, Li Chen-Fei. Development of reinforced ultra-high toughness cementitious composite permanentformwork: Experimental study and Digital Image Correlation analysis. Composite Structures. 2017. V. 180. P. 892—903. https://doi.org/10.1016/j. compstruct.2017.08.016.
  11. Rjazanova G.N., Kamburg V.G. Opisanie i model’nyi podkhod v tekhnologii vozvedeniya samonesushchikh ograzhdayushchikh konstruktsii iz krupnoporistogo keramzitobetona v nes”emnoi opalubke iz tsementno-struzhechnykh plit. Vestnik Hmel’nickogo nacional’nogo universiteta. Tehnicheskie nauki. 2014. No. 3 (213). P. 183—187. (in Russ.)
  12. Tamrazjan A.G., Bulgakov S.N., Rahman I.A., Stepanov A.Ju. Snizhenie riskov v stroitel’stve pri chrezvychajnyh situacijah prirodnogo i tehnogennogo haraktera. Moscow: ASV Publ., 2012. 297 p. (in Russ.)
  13. Kh. Makhmud, Svintsov A.P. Reliability of technological systems of building construction in permanent EPS formwork. International Journal of Advanced and Applied Sciences. 2017. V. 4. I. 11. Pр. 94—98. https://doi.org/10.21833/ijaas.2017.011.014
  14. Svintsov A.P., Panin O.V. Nadezhnost’ tehnologicheskoj sistemy vozvedenija monolitnyh zhelezobetonnyh sten. RUDN Journal of Engineering Rsearches. 2011. No. 2. P. 43—47. (in Russ.)
  15. Bajburin A.Kh. Obespechenie kachestva i bezopasnosti vozvodimyh grazhdanskih zdanij. Moscow: ASV Publ., 2015. 335 p. (in Russ.)
  16. Bajburin A.Kh. Construction accident ts probability estimate taking into account errors of construction participants. Bulletin of the South Ural State University Series “Construction Engineering and Architecture”. 2015. Vol. 15. No. 1. P. 10—13. (in Russ.)
  17. Moon S., Choi E., Yang B. Holistic integration based on USN technology for monitoring safety during concrete placement. Automation in Construction. 2015. V. 57. P. 112—119. https://doi. org/10.1016/j.autcon.2015.05.001
  18. Abdullayev G.I. The main directions of building processes reliability improving. Magazine of civil engineering. 2010. No. 4(14). P. 59—60. (in Russ.)
  19. Nazarko L. Technology Assessment in Construction Sector as a towards Sustainability. Procedia Engineering. 2015. V. 122. P. 290—295.
  20. Nightingale P. Technological capabilities, invisible infrastructure and the un-social construction of predictability: the overlooked fixed costs of useful research. Research Policy. 2004. V. 33. No. 9. P. 1259—1284.

Statistics

Views

Abstract - 470

PDF (Russian) - 188

Cited-By


PlumX


Copyright (c) 2018 Svintsov A.P., Koen A.R., Bisiev Z.A., Arsamakov I.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies