ТЕХНОГЕННЫЕ ГРУНТЫ КАК ФАКТОР ДОЛГОВРЕМЕННОГО ЗАГРЯЗНЕНИЯ РОДНИКОВЫХ ВОД (на примере Сергиево-Посадского района Московской области)

А.А. Рассказов, Е.Ю. Васильева, Е.С. Горбатов

Экологический факультет Российский университет дружбы народов Подольское шоссе, 8/5, Москва, Россия, 113093

В статье приводятся данные геоэкологического исследования серии родников, используемых в хозяйственно-питьевых целях. Выявлены закономерности изменения качества родниковых вод под воздействием антропогенных факторов. Геоэкологические факторы, такие как наличие на поверхности водосбора техногенных грунтов, сорбционные характеристики и состав почв и др., оказывают существенное влияние на присутствие загрязняющих компонентов в родниковых водах.

Ключевые слова: техногенные грунты, родник, загрязнение воды, химический анализ, подземные воды, антропогенное загрязнение.

Урбанизированные территории характеризуются высокой концентрацией населения, транспорта, промышленных и коммунальных объектов на сравнительно небольших площадях. В связи с этим окружающая среда подвергается наиболее интенсивному техногенному воздействию. Одним из проявлений антропогенного влияния является загрязнение и нарушение гидродинамических свойств природных подземных вод.

На территории Московской области широко распространены подземные воды, приуроченные как к четвертичным, так и коренным отложениям различного возраста. Наиболее сильное техногенное воздействие и загрязнение испытывают верхние водоносные горизонты, приуроченные к мощному покрову рыхлых отложений. Повсеместно распространенные естественные выходы подземных вод на поверхность, родники являются исключительно индикаторными при мониторинге состояния природных вод.

В связи с тем, что формирование вод, питающих родники, происходит на стыке атмосферы, гидросферы и литосферы, при оценке степени антропогенного воздействия на подземные воды и разработке профилактических и защитных мер необходимо учитывать весь комплекс негативных факторов антропогенного происхождения.

Уникальность территории Московской области заключается в том, что в ее центре расположена крупнейшая в России промышленная агломерация — г. Москва, вокруг которой группируются городские и сельские поселения, густота которых убывает к периферии.

Несмотря на то, что экологическая обстановка и степень загрязнения родниковых вод в отдельных городах Подмосковья различны, причины и механизмы

поступления возможных загрязнений схожи. В связи с этим, выявив основные факторы, влияющие на состояние подземных родниковых вод и определив пути поступления загрязнений в одном типичном районе, можно оценить ситуацию в других районах и разработать рекомендации по устранению этих источников.

Большое значение изучение условий загрязнения родниковых вод приобретает в Сергиево-Посадском районе, где благодаря наличию двух резко различных типов рельефа широко распространены естественные выходы подземных вод на поверхность (рис. 1).

Рис. 1. Схема расположения района исследований *Источник:* [8]

Территория Сергиево-Посадского района относится к южной приосевой части Московского артезианского бассейна. Ее гидрогеологические условия определяются особенностями геологического строения, рельефа, гидрографии и климата района [3].

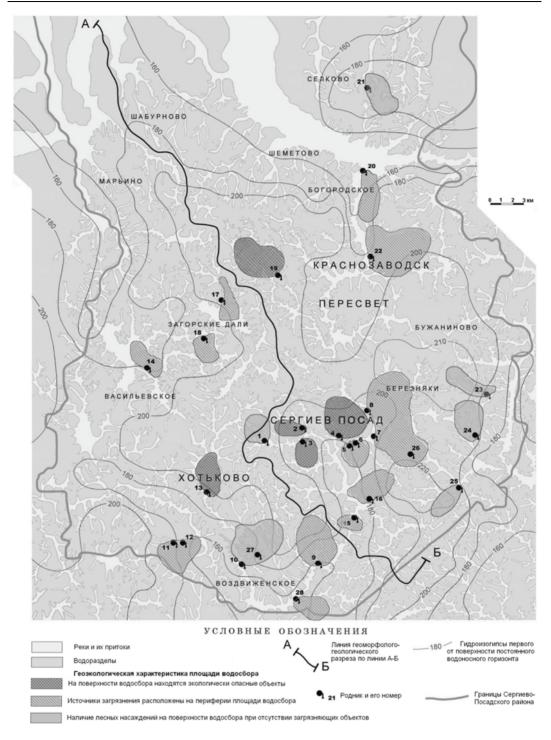
Мощный (от 1800 до 2600 м) осадочный чехол образован палеозойскими отложениями, залегающими слабонаклонно в северо-восточном направлении, и мезозойскими и кайнозойскими, залегающими горизонтально. Осадочный чехол бассейна сложен чередующимися толщами хорошо водопроницаемых и относительно водоупорных пород, что позволяет выделить здесь целый ряд водоносных горизонтов и комплексов. Характерны вертикальное и горизонтальное движение подземных вод и гидравлическая связь водоносных горизонтов. Эти горизонты и комплексы объединяются в три гидрогеологических этажа [6].

Питание и разгрузка подземных вод определяются следующими факторами:

- широким развитием гидрографической сети;
- отсутствием древних погребенных долин, прорезающих юрские отложения;
- искусственными факторами (водозаборы в городах Сергиев Посад, Краснозаводск).

Характерной особенностью территории является широкое развитие в ее пределах грунтовых вод в четвертичных и мезозойских (верхнемеловых) отложениях. В ряде случаев воды четвертичных отложений обладают напором [2; 9].

Значительное количество атмосферных осадков при относительной величине испарения благоприятствует питанию и накоплению запасов подземных вод. Просачиванию атмосферных осадков способствует наличие трещин выветривания и опесчаненных разностей в водоупорных отложениях.


Общая минерализация грунтовых вод колеблется от 0,2 до 1,2 г/л; в зимний период преобладает сульфатно-гидрокарбонатный состав воды, а весной и осенью — гидрокарбонатно-сульфатный. Меловые водоносные горизонты весь год имеют почти постоянный гидрокарбонатный кальциевый состав и общую минерализацию от 0,3 до 0,8 г/л [9].

На территории Сергиево-Посадского района расположено более 100 родников эрозионного происхождения, питание которых происходит в основном за счет инфильтрации атмосферных осадков и частично за счет вод более глубокого залегания. Вода приблизительно 30 источников регулярно используется местным населением в питьевых целях. Однако в результате усиления техногенной нагрузки на окружающую среду использование родниковой воды становится все более небезопасным в эпидемиологическом отношении.

Целью исследований, проводимых сотрудниками кафедры геоэкологии экологического факультета РУДН в последние годы, явилось изучение геоэкологических условий формирования родниковых вод данных источников и установление возможных путей их загрязнения.

Помимо оценки эколого-геологических особенностей площадей водосбора и мест выходов серии родников, были изучены гидродинамические, физико-химические и микробиологические характеристики родниковых вод.

Так, было обследовано 28 родников, расположенных в различных геоэкологических условиях (рис. 2).

Рис. 2. Схема расположения объектов исследования и геоэкологические условия территорий водосбора родников

В ходе работ первую очередь оценивалось наличие на поверхности водосбора опасных объектов — источников загрязнения родниковых вод, в частности,

промпредприятий, сельскохозяйственных объектов (гаражи сельхозтехники, животноводческие фермы), дачных поселков с выгребными ямами, свалок твердых бытовых отходов (ТБО), насыпных грунтов, крупных автодорог и др.

Характерной чертой Московской области и в частности Сергиево-Посадского района является повсеместное распространение частной жилой застройки с приусадебными хозяйствами, садоводческих кооперативов, коттеджных поселков и т.д. Следует отметить неконтролируемое внесение удобрений, отсыпку загрязненных грунтов, наличие несанкционированных свалок ТБО в пределах данных участков, что провоцирует загрязнение подземных вод, питающих родники, тяжелыми металлами, а также приводит к повышению содержания в их водах азота в форме нитрат-иона [5; 7].

Центральная часть города испытывает наиболее сильное техногенное воздействие, что выражается в ухудшении многих показателей состояния окружающей среды и, в частности, загрязнении подземных вод, вскрываемых родниками (родники № 2—4). Основными факторами, влияющими на загрязненность родниковых вод данной территории, является наличие по всей поверхности водосбора индивидуальной застройки с приусадебными участками, отсутствие центральной канализации, подсыпка грунта, содержащего отходы и мусор. Подобное интенсивное антропогенное воздействие способно привести к активному возрастанию содержания азота аммонийного, фосфатов, сульфатов, хлоридов в водах, вскрываемых родниками. Для родников, расположенных в данном районе характерен следующий тип разреза (рис. 3).

Загрязненные техногенные грунты являются одним из долговременных индикаторов степени экологического благополучия или неблагополучия урбанизированных территорий [4].

Углубленный анализ химического состава воды источников, на поверхности водосбора которых присутствуют техногенные отложения различного генезиса, позволил выявить превышение ПДК следующих показателей: свинца, меди, цинка, кадмия, жесткости общей, азота в форме нитрат-иона.

Техногенное поступление компонентов-загрязнителей в воды, питающие родники, имеет две характерные особенности: 1) единовременные выбросы промпредприятий (аварийные выбросы); 2) регулярное поступление тяжелых металлов и других компонентов в зависимости от типа хозяйственного использования территории [1]. По первому положению загрязнения установлено не было. Регулярный характер поступления загрязняющих элементов (тяжелых металлов, нитратов, нефтепродуктов) зафиксирован на участках расположения 13 родников. Все они расположены в пределах селитебных территорий или в непосредственной близости от несанкционированных свалок и полигонов ТБО.

В результате анализа геоэкологических условий мест расположения родников, были выделены основные техногенные факторы, влияющие на состояние подземных вод родников Сергиево-Посадского района. Сводные данные по видам и степени загрязнения представлены в табл. 1.

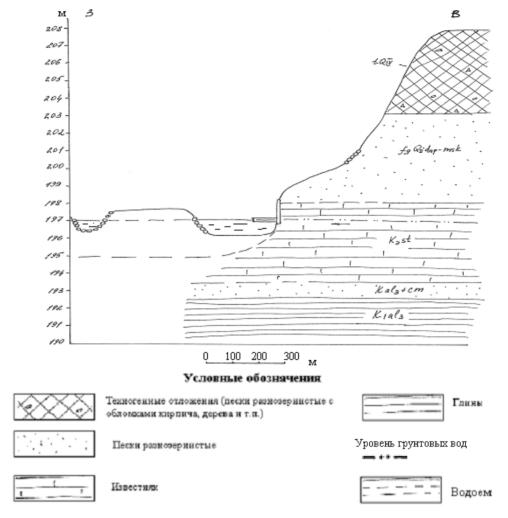


Рис. 3. Гидрогеологический разрез в районе расположения родника № 2

Таблица 1 Сводные данные по компонентам родникового стока (средние значения)

Родник №	1	2	3	4	5	6	7	8
Нитраты	26,69	59,95	74,79	37,52	28,11	12,66	40,36	25,00
рН	7,11	6,38	7,02	6,87	7,24	7,54	7,02	7,28
Жесткость	6,96	8,20	8,52	8,52	6,76	8,70	3,73	6,60
Хлориды	37,74	62,96	68,13	80,08	20,92	20,00	30,26	16,50
Pb	0,001	0,004	0,0008	0,0009	0,001	0,001	0,0012	0,001
Cu	0,001	0,005	0,004	0,0009	0,001	0,001	0,004	0,001
Zn	0,010	0,023	0,008	0,008	0,010	0,010	0,010	0,010
Cd	0,001	0,003	0,004	0,0009	0,001	0,001	0,003	0,001
Нефтепродукты	0,005	0,016	0,020	0,009	0,005	0,005	0,005	0,005
Родник №	9	10	11	12	13	14	15	16
Нитраты	3,56	25,44	18,49	36,45	34,50	40,15	50,41	25,28
pH	7,43	6,97	6,88	7,16	7,11	7,02	7,14	7,40
Жесткость	7,24	8,03	3,39	3,42	5,62	3,73	5,66	8,07
Хлориды	32,80	41,85	15,10	21,64	35,12	30,26	38,52	35,78

Окончание

Родник №	9	10	11	12	13	14	15	16
Pb	0,001	0,001	0,001	0,001	0,002	0,001	0,001	0,001
Cu	0,001	0,001	0,001	0,001	0,002	0,004	0,001	0,001
Zn	0,010	0,010	0,010	0,0096	0,0103	0,010	0,010	0,010
Cd	0,001	0,001	0,001	0,002	0,001	0,003	0,003	0,001
Нефтепродукты	0,005	0,005	0,005	0,005	0,100	0,005	0,013	0,005
Родник №	17	18	19	20	21	22	23	24
Нитраты	4,01	51,92	74,78	4,01	4,53	33,00	8,99	44,65
рН	7,65	7,32	7,01	7,65	7,34	7,62	7,07	7,60
Жесткость	4,690	7,85	8,51	4,69	8,05	7,77	8,01	4,84
Хлориды	23,95	44,70	68,12	23,95	24,46	30,14	31,66	34,48
Pb	0,001	0,001	0,0011	0,001	0,001	0,001	0,001	0,001
Cu	0,001	0,001	0,0056	0,001	0,001	0,001	0,001	0,001
Zn	0,010	0,010	0,0107	0,010	0,010	0,010	0,010	0,010
Cd	0,001	0,001	0,0081	0,001	0,001	0,0045	0,001	0,001
Нефтепродукты	0,005	0,005	0,024	0,005	0,005	0,005	0,005	0,005
Родник №	25	26	27	28	ПДК	Единицы		
Нитраты	3,50	62,62	40,89	42,21	45	мг/л		
рН	7,44	7,41	7,62	7,52	6—9	рН		
Жесткость	7,05	4,76	7,64	8,98	7—10	мг-экв./л		
Хлориды	17,61	57,67	57,17	45,54	350	мг/л		
Pb	0,001	0,001	0,001	0,001	<0,001	мг/л		
Cu	0,001	0,001	0,0012	0,001	<0,001	мг/л		
Zn	0,010	0,010	0,010	0,011	<0,01	мг/л		
Cd	0,001	0,001	0,0035	0,001	<0,001	мг/л		
Нефтепродукты	0,005	0,005	0,0203	0,005	< 0,005	мг/л		

Таблица 2
Основные загрязнения, поступающие в родниковые воды
при инфильтрации атмосферных осадков через насыпные грунты
на территории Сергиево-Посадского района

Техногенный фактор	Загрязняющие ве- щества	№ родни- ков	Значение ПДК	Содержание в родниковой воде
Загрязнение поверхно- сти водосбора техно- генными грунтами в пределах селитебных территорий	NO3 ²⁻ Cd Pb	2—4	45 мг/л <0,001 мг/л <0,001 мг/л	1,5—2 ПДК 1,2 ПДК 1,5 ПДК
Загрязнение поверхно- сти водосбора тверды- ми бытовыми отходами (санкционированные и несанкционированные свалки ТБО)	Pb Cu Zn Cd Бензин, мазут и др.	15, 19, 27	<0,001 мг/л <0,001 мг/л <0,01 мг/л <0,001 мг/л <0,005 мг/л	1,2—1,9 ПДК

Наибольшее техногенное воздействие испытывает участок расположения родника № 19 (д. Парфеново). На поверхности его водосбора находится отработанный песчаный карьер, в котловине которого организован крупнейший в районе полигон ТБО. В ходе разработки карьера был удален слой суглинков московской морены, защищавших от загрязнений нижележащие водоносные горизонты (московско-днепровский межморенный (fgQ $_{\rm II}$ dnp-msk), сантонский (K $_{\rm 2}$ st) водоносные горизонты). В результате стоки с полигона ТБО попадают в под-

земные воды, питающие родник, привнося целый спектр загрязняющих элементов, в частности тяжелых металлов.

Таким образом, было установлено, что на родниковые воды в пределах исследуемой территории действует комплекс техногенных факторов различного генезиса, связанных с развитием техногенных отложений, определяющий загрязнение ряда родников тяжелыми металлами, нитратами, нефтепродуктами. Максимальный уровень загрязнения характерен для участков расположения родников в наиболее урбанизированных районах и в непосредственной близости от свалок ТБО.

Проведенное районирование территории по геоэкологическим условиям участков расположения родников позволило выявить районы повышенного накопления загрязняющих элементов, что является основой планирования постановки мониторинга и мероприятий по защите водоносных горизонтов.

Комплексная оценка причин и механизмов поступления загрязнений в родниковые воды для рассматриваемой типичной урбанизированной территории, позволяет использовать полученные результаты в районах с аналогичными геоэкологическими условиями.

ЛИТЕРАТУРА

- [1] Воронков Н.А. Леса и охрана водных ресурсов // Экологические исследования в г. Москве и Московской области. Состояние водных систем. М.: ИНИОН РАН, 1992. С. 15—28. [Voronkov N.A. Lesa i okhrana vodnykh resursov // Ekologicheskie issledovaniya v g. Moskve i Moskovskoi oblasti. Sostoyanie vodnykh sistem. М.: INIION RAN, 1992. S. 15—28.]
- [2] Геологическая карта СССР (четвертичных отложений). Масштаб 1: 200 000 / Министерство геологии СССР. М., 1976—1980. [Geologicheskaya karta SSSR (chetvertichnykh otlojeniy). Masshtab 1: 200 000 / Ministerstvo geologii SSSR. М., 1976—1980.]
- [3] Геолого-экологические исследования в г. Москве и Московской области: Буклет / Составитель Геоцентр-Москва. М., 1992. С. 8—14. [Geologo-ekologicheskie issledovaniya v g. Moskve i Moskovskoi oblasti: Buklet / Sostavitel Geotsentr-Moskva. М., 1992. S. 8—14.]
- [4] *Давиденко Н.М.* Актуальные вопросы геоэкологии. М.: ГЕОС, 2003. [*Davidenko N.M.* Aktualnye voprosy geoekologii. М.: GEOS, 2003.]
- [5] *Егоренков Л.И.* Агроландшафты Московской области. Проблемы их изучения, рационального использования и охраны // Ландшафты Московской области и Подмосковья, их использование и охрана. М., 1990. [*Egorenkov L.I.* Agrolandshafty Moskovskoi oblasti. Problemy ikh izucheniya, ratsionalnogo ispolzovaniya i okhrany // Landshafty Moskovskoi oblasti i Podmoskov'ya, ikh ispolzovaniya i okhrana. М., 1990.]
- [6] Зекцер И.С. Подземные воды как компонент окружающей среды. М.: Научный мир, 2001. [Zetsker I.S. Podzemnye vody kak komponent okrujaushei sredy. М.: Nauchnyi mir, 2001.]
- [7] Ландшафты Московской области и их современное состояние / Под. ред. И.И. Мамай. Смоленск: СГУ, 1997. [Landshafty Moskovskoi oblasti i ikh sovremennoe sostoyanie / Pod red. I.I. Mamai. Smolensk: SGU, 1997.]
- [8] Новаковский Б.А., Симонов Ю.Г., Тульская Н.И. Эколого-геоморфологическое картографирование Московской области. М.: Научный мир, 2005. [Novakovskyi B.A., Simonov U.G., Tulskaya Ni.I. Ekologo-geomorphologicheskoe kartographirovanie Moskovskoi oblasti. М.: Nauchnyi mir, 2005.]

[9] Шик С.М. Район московского оледенения (за границей валдайского оледения) // Рельеф и стратиграфия четвертичных отложений северо-запада Русской равнины. — М.: Изд-во АН СССР, 1961. [Shik S.M. Raion Moskovskogo oledeneniya (za granitsei valdaiskogo oledeneniya) // Relief i stratigraphiya chetvertichnykh otlojenii severo-zapada Russkoi ravniny. — М.: AN SSSR, 1961.]

TECHNOGENIC SOIL AS A LONG-TERM FACTOR FOR SPRING WATER CONTAMINATION (by the example of Moscow region)

A.A. Rasskazov, E.U. Vasilieva, E.S. Gorbatov

Ecological Faculty
Peoples' Friendship University of Russia
Podolskoe shosse, 8/5, Moscow, Russia, 113093

In article the results of the research work of series of springs are stated. Regularity of change of spring water quality under the influence of man-caused factors is revealed. Such factors as geological structure of rocks, sorption characteristics, presence of technogenic soil etc., have a significant impact on the presence of contaminants in spring water. The complex approach enables to optimize the actions for spring water pollution prevention.

Key words: technogenic soil, spring water, chemical analysis, groundwater, anthropogenic pollution.