ВРЕМЕННЫЕ ИЗМЕНЕНИЯ СОДЕРЖАНИЯ ПОЛИАРЕНОВ В ПОЧВАХ И РАСТЕНИЯХ НИЖНЕГО ЯРУСА ЮЖНОЙ ТУНДРЫ ПОД ВОЗДЕЙСТВИЕМ УГЛЕДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ

Обложка

Аннотация


В связи с быстрым развитием промышленности во всем мире усиливается загрязнение окружающей среды полициклическими ароматическими углеводородами (ПАУ). Тундровые экосистемы наряду с высоким ресурсным потенциалом характеризуются низкой устойчиво-стью к антропогенным воздействиям. Целью исследования было изучение возможностей использования органогенных горизонтов почв, растений и лишайников для диагностики временных изменений содержания ПАУ в фитоценозах южной тундры при аэротехногенном воздействии. Были проведены мониторинговые исследования содержания ПАУ в органогенных горизонтах почв и растениях нижнего яруса южной тундры. Почвы и растения отбирали на фоновом участке и в районе действия угольной шахты «Воркутинская» на расстоянии 0,5; 1,0 и 1,5 км от источника эмиссии с учетом розы ветров в северо-восточном направлении. В зоне действия угледобывающего предприятия отбор был осуществлен в 2013 и 2015 годах. В качестве модельных видов были выбраны лишайник - Peltigera leucophlebia Nyl., мох - Pleurozium schreberi Brid. и листья кустарничка - Vaccinium myrtillus L. Для извлечения ПАУ из почв и растений использовали систему ускоренной экстракции растворителями ASE-350 (Thermo Fisher Scientific, США). Содержание ПАУ в пробе определяли методом ВЭЖХ.В органогенных горизонтах почв, растениях и лишайниках исследованных участков было идентифицировано 13 структур ПАУ. Основным источником ПАУ в почвах и растениях зоны действия шахты Воркутинская, была угольная пыль. В состав ПАУ почв и растений максимальный вклад вносили легкие полиарены, при этом их доля оставалась устойчивой во времени на разном удалении от шахты, что свидетельствует о постоянном характере загрязнения в течение исследованного периода. Уменьшение содержания полиаренов в растениях за двух-летний период свидетельствовало о снижении интенсивности воздействия шахты на изучаемые фитоценозы. Растения быстрее реагировали на изменение потоков полиаренов в тундровых фитоценозах по сравнению с органогенными горизонтами почв, поэтому они могут быть использованы как более чуткие индикаторы изменения состояния окружающей среды. Среди исследованных видов растений наибольшим накоплением полиаренов в условиях загрязнения отличался мох Pleurozium schreberi, который в силу своей широкой распространенности и способности к активной аккумуляции ПАУ может быть использован в целях биоиндикации уровня загрязнения в зонах действия угледобывающей промышленности.


Е В Яковлева

Лицо (автор) для связи с редакцией.
kaleeva@ib.komisc.ru
Институт биологии Коми научного центра Уральского отделения РАН ул. Коммунистическая, 28, Сыктывкар, Республика Коми, Россия, 167982

Яковлева Евгения Вячеславовна - кандидат биологических наук, н. с. отдела почвоведения Федерального государственного бюджетного учреждения науки Института биологии Коми научного центра Уральского отделения РАН.

Д Н Габов

gabov@ib.komisc.ru
Институт биологии Коми научного центра Уральского отделения РАН ул. Коммунистическая, 28, Сыктывкар, Республика Коми, Россия, 167982

Габов Дмитрий Николаевич - кандидат биологических наук, н. с. экоаналитической лаборатории Федерального государственного бюджетного учреждения науки Института биологии Коми научного центра Уральского отделения РАН.

В А Безносиков

beznosikov@ib.komisc.ru
Институт биологии Коми научного центра Уральского отделения РАН ул. Коммунистическая, 28, Сыктывкар, Республика Коми, Россия, 167982

Безносиков Василий Александрович - доктор сельскохозяйственных наук, заведующий лабораторией химии почв отдела почвоведения Федерального государственного бюджетного учреждения науки Института биологии Коми научного центра Уральского отделения РАН.

  • Абакумов Е.В., Лодыгин Е.Д., Габов Д.А., Крыленков В.А. Содержание полициклических ароматических углеводородов в почвах Антарктиды на примере российских полярных станций // Гигиена и санитария. 2014. № 1. С. 30-34.
  • Cvetković А., Jovašević-Stojanović M., Matić-Besarabić S., Marković D.A., Bartoňová A. Comparison of sources of urban ambient particle bound pahs between non-heating seasons 2009 and 2012 in Belgrade, Serbia // Chem. Ind. Chem. Eng. Q. 2015. 21 (1). P. 211-219.
  • Nguyen H.T., Kim K.-H., Ma C.-J., Oh J.-M. Polycyclic Aromatic Hydrocarbon Concentration Levels on the Korean Peninsula between 2006 and 2008 // The Scientific World JOURNAL. 2010. 10. P. 20-37.
  • Кошелева Н.Е., Никифорова Е.М. Многолетняя динамика и факторы накопления бенз(а) пирена в городских почвах (на примере ВАО г. Москвы) // Вестник Моск. ун-та. Сер. 17. Почвоведение. 2011. № 2. С. 25-34.
  • Сушкова С.Н., Минкина Т.М., Манджиева С.С., Тюрина И.Г., Васильева Г.К., Kızılkaya R. Мониторинг содержания бенз(а)пирена в почвах под влиянием многолетнего техногенного загрязнения // Почвоведение. 2017. № 1. С. 1-12.
  • Kim S.-K., Lee D. S., Shim W.J., Yim U.H. Shin Y.-S. Interrelationship of Pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) Contamination in Different Environmental Media // Sensors. 2009. 9. P. 9582-9602.
  • Wu Q., Wang X., Zhou Q. Biomonitoring persistent organic pollutants in the atmosphere with mosses: Performance and application // Environment International. 2014. 66. P. 28-37.
  • Iodice P., Adamo P., Capozzi F. Di Palma A., Senatore A., Spagnuolo V., Giordano S. Air pollution monitoring using emission inventories combined with the moss bag approach // Science of the total environment. 2016. 541. P. 1410-1419.
  • Zhang Y.F., Shotyk W., Zaccone C., Noernberg T., Pelletier R., Bicalho B. , Froese D.G. , Davies L., Martin J.W. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region // Environmental science & technology. 2016. 50(4). P. 1711- 1720.
  • Vingiani S., De Nicola F., Purvis W.O., Concha-Grana E., Muniategui-Lorenzo S., Lopez-Mahia P., Giordano S., Adamo P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: a Case Study in the Cities of Naples and London // Water air and soil pollution. 2015. 226 (8). P. 240.
  • Foan L., Domercq M., Bermejo R., Santamaria J.M., Simon V. Mosses as an integrating tool for monitoring PAH atmospheric deposition: Comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study // Chemosphere. 2015. 119. P. 452-458.
  • Kodnik D., Carniel F. C., Licen S., Tolloi A., Barbieri P., Tretiach M. Seasonal variations of PAHs content and distribution patterns in a mixed land use area: A case study in NE Italy with the transplanted lichen Pseudevernia furfuracea // ATMOSPHERIC ENVIRONMENT. 2015. 113. P. 255-263.
  • Mizwar A., Trihadiningrum Y. PAH Contamination in Soils Adjacent to a Coal-Transporting Facility in Tapin District, South Kalimantan, Indonesia // Arch. Environ. Contam. Toxicol. 2015. 69. P. 62-68.
  • Huang H., Xing X., Zhang Z., Qi S., Yang D., Yuen D.A., Sandy E.H., Zhou A., Li X. Polycyclic aromatic hydrocarbons (PAHs) in multimedia environment of Heshan coal district, Guangxi: distribution, source diagnosis and health risk assessment // Environ. Geochem. Health. 2016. 38. P. 1169-1181.
  • Хаустов А.П., Редина М.М. Трансформация нефтепродуктов как источник токсичных загрязнений природных сред // Экология и промышленность России. 2012. № 12. С. 38-44.
  • Яковлева Е.В., Габов Д.Н., Безносиков В. А., Кондратенок Б.М. Полициклические ароматические углеводороды в почвах и растениях нижнего яруса южной кустарниковой тундры в условиях техногенеза // Почвоведение. 2014. № 6. С. 685-696.
  • Атлас почв Республики Коми / отв. ред. А.И. Таскаев. Сыктывкар, 2010. 356 c.
  • Атлас Республики Коми по климату и гидрологии / отв. ред. А.И. Таскаев. М., 1997. 116 с.
  • Безносиков В.А. Лодыгин Е.Д. Фракционно-групповой состав гумуса криогенных поверхностно-глеевых и гидроморфных почв Большеземельской тундры // Вестн. СПбГУ. Сер. 3. Биология. 2012. Вып. 1. С. 107-120.
  • Яковлева Е.В., Габов Д.Н., Безносиков В.А., Кондратенок Б.М. Накопление полициклических ароматических углеводородов в почвах и растениях тундровой зоны под воздействием угледобывающей промышленности // Почвоведение. 2016. № 11. С. 1402-1412.
  • Skert N., Falomo J., Giorgini L., Acquavita A., Capriglia L., Grahonja R., et al. Biological and artificial matrixes as PAH accumulators: an experimental comparative study // Water Air Soil Pollut. 2010. 206(1). P. 95-103.
  • Елин Е.С. Фенольные соединения в биосфере. Новосибирск: Изд-во СО РАН, 2001. 392 с.

Просмотры

Аннотация - 98

PDF (Russian) - 66


© Яковлева Е.В., Габов Д.Н., Безносиков В.А., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.