ZINC AND CADMIUM IN TREE SPECIES OF FOREST ECOSYSTEMS: PATTERNS OF TRANSLOCATION, ACCUMULATION AND BARRIER MECHANISMS

Cover Page

Abstract


This paper has been devoted to the problem of zinc and cadmium accumulation and distribution in the tree organs (on the example of forest ecosystems in the center of the East European plain). Using the translocation and discrimination factors it has been found that zinc as a rule translocated to the aboveground tree phytomass while cadmium was located to a greater extent within the roots. It has been found that the selectivity of the membrane transport systems of plantsincreased toward photosynthetic organs. It has been shown that the main reason of high cadmium accumulation in the stem wood is predominant cadmium xylem transport in the form of free ion Cd2+. In addition it has been foundsome aspects of species-specific accumulation of zinc and cadmium in tree species, associated with their geochemical specialization and peculiarities of the thiol compounds metabolism


About the authors

O S Zheleznova

Peoples’ Friendship University of Russi; Ryazan State University S.A. Esenin

Author for correspondence.
Email: Zheleznova_rzn@mail.ru
Miklukho-Maklaya str., 6, Moscow, Russia, 117198; ul. Svobody, 46, Ryazan, Russia, 390000

Zheleznova Olga Sergeevna - post-graduate student of the 2nd year of the ecological faculty of the Russian University of Peoples’ Friendship; Technician-laboratory assistant of the Department of Physical Geography and Methods of Teaching Geography of Ryazan State University named after S.A. Yesenin.

N A Chernykh

Ryazan State University S.A. Esenin

Email: chernykh_na@rudn.university
ul. Svobody, 46, Ryazan, Russia, 390000

Chernykh Natalia Anatolievna - Doctor of Biological Sciences, Professor; Head of the Department of Forensic Ecology with the course of human ecology of Peoples’ Friendship University of Russia.

S A Tobratov

Peoples’ Friendship University of Russi

Email: tobratovsa@mail.ru
Miklukho-Maklaya str., 6, Moscow, Russia, 117198

Tobratov Sergei Anatolievich - Candidate of Biological Sciences, Head of the Laboratory of Geochemistry of Landscapes at the Department of Physical Geography and Methods of Teaching Geography of Ryazan State University named after S.A. Yesenin, Associate Professor.

References

  1. Volkov S.N. Geokhimicheskaya evolyutsiya kadmiya v estestvennom i tekhnogennom tsiklakh migratsii. Tekhnogenez i biokhimicheskaya evolyutsiya taksonov biosfery. Tr. Biogeokhim. lab. Moscow: Nauka, 2003; 24: 113—141. (In Russ.).
  2. Bingam F.T., Kosta M., Eikhenberger E. Nekotorye voprosy toksichnosti ionov metallov. Zigel’ Kh, Zigel’ A, editors. Moscow: Mir, 1993. (InRuss.).
  3. Seregin IV. Raspredelenie tyazhelykh metallov v rasteniyakh i ikh deistvie na rost [dissert.ation]. Moscow, 2009. (In Russ.).
  4. Deram A., Denayer F.-O., Petit D., Haluwyn C.V. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils. Environmental Pollution. 2006, 140 (1): 62—70. http://dx.doi.org/10.1016/j.envpol.2005.06.025
  5. Brekken A., Steinnes E. Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Science of the Total Environment. 2004, 326 (1-3): 181—195. http://dx.doi.org/10.1016/j.scitotenv.2003.11.023
  6. Waters B.M., Grusak M.A. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytologist. 2008; 177 (2): 389—405. http://dx.doi.org/10.1111/j.1469-8137.2007.02288.x
  7. Liu W., Ni J., Zhou Q. Uptake of heavy metals by trees: prospects for phytoremediation. Materials Science Forum. 2013; 743—744: 768—781. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.768
  8. Durand T.C., Baillif P., Albéric P., Carpin S., Label P., Hausman J.-F., et al. Cadmium and zinc are differentially distributed in Populus tremula x P. alba exposed to metal excess. Plant Biosystems — An International Journal Dealing with all Aspects of Plant Biology. 2011; 145 (2): 397—405. http://dx.doi.org/10.1080/11263504.2011.567787
  9. Krivtsov V.A., editor. Priroda Ryazanskoi oblasti. Ryazan: Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, 2008. (In Russ.).
  10. Jing Y., Cui H., Li T., Zhao Z. Heavy metal accumulation characteristics of Nepalese alder (Alnus nepalensis) growing in a lead-zinc spoil heap, Yunnan, southwestern China. iForest — Biogeosciences and Forestry. 2014; 7 (4): 204—208. http://dx.doi.org/10.3832/ifor1082-007
  11. Álvarez-Fernández A., Díaz-Benito P., Abadía A., López-Millán A.-F., Abadía J. Metal species involved in long distance metal transport in plants. Frontiers in plant science. 2014; 5 (105). http://dx.doi.org/10.3389/fpls.2014.00105
  12. Conn S., Gilliham M. Comparative physiology of elemental distributions in plants. Annals of Botany. 2010; 105 (7): 1081—1102. http://dx.doi.org/10.1093/aob/mcq027
  13. Zhu Y.-G., Smolders E. Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany. 2000; 51 (351): 1635—1645. http://dx.doi.org/10.1093/jexbot/51.351.1635
  14. Kitagishi K., Obata H. Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis. Soil Science and Plant Nutrition. 1986; 32 (3): 397—405. http://dx.doi.org/10.1080/00380768.1986.10557520
  15. Marschner P., editor. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Adelaide: School of Agriculture, Food and Wine, the University of Adelaide Australia, 2012.
  16. Brunner I., Luster J., Gunthardt-Goerg M.S., Frey B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. EnvironmentalPollution. 2008; 152 (3): 559—568. http://dx.doi.org/10.1016/j.envpol.2007.07.006
  17. Belleghem F.V., Cuypers A., Semane B., Smeets K., Vangronsveld J., d’Haen J., et al. Subcellular localization of cadmium in roots and leaves ofArabidopsis thaliana.New Phytologist. 2007; 173 (3): 495—508. http://dx.doi.org/10.1111/j.1469-8137.2006.01940.x
  18. Krivtsov V.A., Tobratov S.A., Vodorezov A.V., Komarov M.M., Zheleznova O.S., Solov’eva E.A. Prirodnyi potentsial landshaftov Ryazanskoi oblasti.Ryazan: Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, 2011. (In Russ.).
  19. Hagen-Thorn A., Stjernquist I. Micronutrient levels in some temperate European tree species: a comparative field study. Trees. 2005; 19 (5): 572—579. http://dx.doi.org/10.1007/s00468-005-0416-5
  20. Tobratov S.A., Popov V.I., Popova A.V. Faktory i zakonomernosti migratsii tyazhelykh metallov v lesnykh geosistemakh Ryazanskogo regiona. (Conference proceedigs) Materialy regional’noi nauchno-prakticheskoi konferentsii «Voprosy regional’noi geografii i geoekologii». Krivtsov V.A., editor. Ryazan: Ryazanskiii gosudarstvennyi universitet im. S.A. Esenina, 2007: 84—114. (In Russ.).
  21. Tobratov S.A., Zheleznova O.S., Krivtsov V.A. Critical loads-based ecological control of heavy metal deposition in natural and anthropogenic ecosystems: trial study. International Journal of Biology, Pharmacy and Allied Sciences. 2016; 5 (11): 3013—3028.
  22. Domínguez M.T., Madrid F., Marañón T., Murillo J.M. Cadmium availability in soil and retention in oak roots: Potential for phytostabilization. Chemosphere. 2009; 76 (4): 480—486. http://dx.doi.org/10.1016/j.chemosphere.2009.03.026
  23. Österås A.H. Interactions between calcium and heavy metals in Norway spruce. Accumulation and binding of metals in wood and bark [dissertation]. Stockholm: Department of Botany, Stockholm University, 2004.
  24. Hazama K., Nagata S., Fujimori T., Yanagisawa S., Yoeneyama T. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiologia Plantarum. 2015; 154(2): 243—255. http://dx.doi.org/10.1111/ppl.12309
  25. Titov A.F., Kaznina N.M., Talanova V.V. Tyazhelye metally i rasteniya. Petrozavodsk: Karel’skii nauchnyi tsentr RAN, 2014. (In Russ.).
  26. Kaznina N.M., Titov A.F., Batova Yu.V. Soderzhanie neproteinovykh tiolov v kletkakh kornya dikorastushchikh mnogoletnikh zlakov pri deistvii kadmiya i svintsa. Trudy Karel’skogo nauchnogo tsentra RAN. 2014; (5): 182—187. (In Russ.).
  27. Sinclair S.A., Kramer U. The zinc homeostasis network of land plants. Biochimica et Biophysica Acta (BBA) — Molecular Cell Research. 2012; 1823 (9): 1553—1567. http://dx.doi.org/10.1016/j.bbamcr.2012.05.016
  28. Yruela I. Copper in plants: acquisition, transport and interactions. Functional Plant Biology. 2009; 36 (5): 409—430. http://dx.doi.org/10.1071/fp08288
  29. Capuana M. Heavy metals and woody plants — biotechnologies for phytoremediation. iForest — Biogeosciences and Forestry. 2011; 4 (1): 7—15. http://dx.doi.org/10.3832/ifor0555-004
  30. Kheldt G.-V. Biokhimiya rastenii. Nosov A.M., Chub V.V., editors. Moscow: BINOM. Laboratoriya znanii, 2011. (In Russ.).
  31. Bouain N., Shahzad Z., Rouached A., Khan G.A., Berthomieu P., Abdelly C., et. al. Phosphate and zinc transport and signalling in plants: towarda better understanding of their homeostasis interaction. Journal of Experimental Botany. 2014; 65 (20): 5725—5741. http://dx.doi.org/10.1093/jxb/eru314
  32. Maestri E., Marmiroli M., Visioli G., Marmiroli N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany. 2010; 68 (1): 1—13. http://dx.doi.org/10.1016/j.envexpbot.2009.10.011
  33. Sofo A., Scopa A., Remans T., Vangronsveld J., Cuypers A. Biochemical and functional responses of Arabidopsis thaliana exposed to cadmium, copper and zinc. The plant family Brassicaceae: contribution towards phytoremediation. Anjum N.A., editor. 2012; 21: 239—263. http://dx.doi.org/10.1007/978-94-007-3913-0_9
  34. Cappa J.J., Pilon-Smits E.A.H. Evolutionary aspects of elemental hyperaccumulation. Planta. 2014; 239 (2): 267—275. http://dx.doi.org/10.1007/s00425-013-1983-0
  35. Schneider A., Kreuzwieser J., Schupp R., Sauter J.J., Rennenberg H. Thiol and amino acid composition of the xylem sap of poplar trees (Populus x canadensis ‘robusta’). Canadian journal of botany. 1994; 72 (3); 347—351. http://dx.doi.org/10.1139/b94-046

Statistics

Views

Abstract - 234

PDF (Russian) - 302

Cited-By


PlumX

Dimensions


Copyright (c) 2017 Zheleznova O.S., Chernykh N.A., Tobratov S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies