Optimal Perturbations of Systems with Delayed Argument for Control of Dynamics of Infectious Diseases Based on Multicomponent Actions

Cover Page

Abstract


In this paper, we apply optimal perturbations to control mathematical models of infectious diseases expressed as systems of nonlinear differential equations with delayed argument. We develop the method for calculation of perturbations of the initial state of a dynamical system with delayed argument producing maximal amplification in the given local norm taking into account weights of perturbation components. For the model of experimental virus infection, we construct optimal perturbation for two types of stationary states, with low or high virus load, corresponding to different variants of chronic virus infection flow.

About the authors

G A Bocharov

Institute of Numerical Mathematics of the Russian Academy of Sciences; RUDN University

Email: gbocharov@gmail.com
8 Gubkina st., 119333 Moscow, Russia; 6 Miklukho-Maklaya st., 117198 Moscow, Russia

Yu M Nechepurenko

Institute of Numerical Mathematics of the Russian Academy of Sciences; Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: yumnech@yandex.ru
8 Gubkina st., 119333 Moscow, Russia; 4 Miusskaya sq., 125047 Moscow, Russia

M Yu Khristichenko

Institute of Numerical Mathematics of the Russian Academy of Sciences; Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: micha.hrist@rambler.ru
8 Gubkina st., 119333 Moscow, Russia; 4 Miusskaya sq., 125047 Moscow, Russia

D S Grebennikov

Institute of Numerical Mathematics of the Russian Academy of Sciences; Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: dmitry.ew@gmail.com
8 Gubkina st., 119333 Moscow, Russia; 4 Miusskaya sq., 125047 Moscow, Russia

References

  1. Беллман Р., Кук К. Л. Дифференциально-разностные уравнения. - М.: Мир, 1967.
  2. Бочаров Г. А., Марчук Г. И. Прикладные проблемы математического моделирования в иммунологии// Журн. выч. мат. и мат. физ. - 2000. - 40. - С. 1905-1920.
  3. Дементьев В. Г., Лебедев В. И., Нечепуренко Ю. М. Спектральный анализ модели ядерного реактора с запаздывающими нейтронами// В сб. «Алгоритмы и программы для нейтронно-физических расчетов ядерных реакторов». - Обнинск: ФЭИ, 1999. - С. 143-150.
  4. Марчук Г. И. Математические модели в иммунологии. - М.: Наука, 1980.
  5. Марчук Г. И. Математические модели в иммунологии. Вычислительные методы и эксперименты. - М.: Наука, 1991.
  6. Марчук Г. И., Бербенцова Э. П. Острые пневмонии. Иммунология, оценка тяжести, клиника, лечение. - М.: Наука, 1989.
  7. Поляк Б. Т., Хлебников М. В., Щербаков П. С. Управление линейными системами при внешних возмущениях. - Москва: ЛЕНАНД, 2014.
  8. Черешнев В. А., Бочаров Г. А., Ким А. В., Бажан С. И., Гайнова И. А., Красовский А. Н., Шмагель Н. Г., Иванов А. В., Сафронов М. А., Третьякова Р. М. Введение в задачи моделирования и управления динамикой ВИЧ инфекции. - М.-Ижевск: АНО Ижевский ин-т комп. иссл., 2016.
  9. Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Sorensen D. LAPACK users guide. - Philadelphia: SIAM, 1999.
  10. Bocharov G. A. Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses// J. Theor. Biol. - 1998. - 192, № 3. - C. 283-308.
  11. Bocharov G. A., Marchuk G. I., Romanyukha A. A. Numerical solution by LMMs of stiff delay differential systems modelling an immune response// Numer. Math. - 1996. - 73, № 2. - С. 131-148.
  12. Bocharov G. A., Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S. Maximum response perturbation-based control of virus infection model with time-delays// Russ. J. Numer. Anal. Math. Modelling. - 2017. - 32. - С. 275-291.
  13. Boiko A. V., Dovgal A. V., Grek G. R., Kozlov V. V. Physics of Transitional Shear Flows: Instability and Laminar-Turbulent Transition in Incompressible Near-Wall Shear Layers. - Berlin: Springer, 2011.
  14. Boiko A. V., Nechepurenko Y. M., Sadkane M. Fast computation of optimal disturbances for duct flows with a given accuracy// Comput. Math. Math. Phys. - 2010. - 50, № 11. - С. 1914-1924.
  15. Boiko A. V., Nechepurenko Yu. M., Sadkane M. Computing the maximum amplification of the solution norm of differential-algebraic systems// Comput. Math. Model. - 2012. - 23, № 2. - С. 216-227.
  16. Chereshnev V. A., Bocharov G., Bazhan S., Bachmetyev B., Gainova I., Likhoshvai V., Argilaguet J. M., Martinez J. P., Rump J. A., Mothe B. et al. Pathogenesis and treatment of HIV infection: the cellular, the immune system and the neuroendocrine systems perspective// Int. Rev. Immunol. - 2013. - 32, № 3. - С. 282-306.
  17. Ciurea A., Klenerman P., Hunziker L., Horvath E., Odermatt B., Ochsenbein A. F., Hengartner H., Zinkernagel R. M. Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice// Proc. Natl. Acad. Sci. USA. - 1999. - 96, № 21. - С. 11964-11969.
  18. Crawford A., Angelosanto J. M., Kao C., Doering T. A., Odorizzi P. M., Barnett B. E., Wherry E. J. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection// Immunity. - 2014. - 40, № 2. - С. 289-302.
  19. Csete M. E., Doyle J. C. Reverse engineering of biological complexity// Science. - 2002. - 295, № 5560. - С. 1664-1669.
  20. Germain R. N., Meier-Schellersheim M., Nita-Lazar A., Fraser I. D. Systems biology in immunology: a computational modeling perspective// Annu. Rev. Immunol. - 2011. - 29. - С. 527-585.
  21. Golub G. H., Van Loan C. F. Matrix Computations. - Baltimore: The John Hopkins University Press, 1996.
  22. Gurdasani D., Iles L., Dillon D. G., Young E. H., Olson A. D., Naranbhai V., Fidler S., Gkrania-Klotsas E., Post F. A., Kellam P. et al. A systematic review of definitions of extreme phenotypes of HIV control and progression// AIDS. - 2014. - 28, № 2. - С. 149-162.
  23. Hairer E., Wanner G. Solving ordinary differential equations. - Berlin: Springer-Verlag, 1996.
  24. Henningson D. S., Reddy S. C. On the role of linear mechanisms in transition to turbulence// Phys. Fluids A. - 1994. - 6, № 3. - С. 1396-1398.
  25. Higham A. V. The scaling and squaring method for the matrix exponential revisited// SIAM J. Matrix Anal. Appl. - 2005. - 26, № 4. - С. 1179-1193.
  26. Kent S. J., Reece J. C., Petravic J., Martyushev A., Kramski M., De Rose R., Cooper D. A., Kelleher A. D., Emery S., Cameron P. U. et al. The search for an HIV cure: tackling latent infection// Lancet Infect. Dis. - 2013. - 13, № 7. - С. 614-621.
  27. Kitano H. Systems biology: a brief overview// Science. - 2002. - 295, № 5560. - С. 1662-1664.
  28. Kitano H. Biological robustness// Nat. Rev. Genet. - 2004. - 5, № 11. - С. 826-837.
  29. Kitano H. Biological robustness in complex host-pathogen systems. - Basel: Birkha¨user, 2007. - С. 239- 263.
  30. Kotsarev A., Lebedev V., Shishkov L., Nechepurenko Yu., Dementiev V. Spectral analysis of VVER-1000 reactor model at high negative reactivities// Proceedings of the Ninth Symposium of AER, 4-8 October, Slovakia, 1999. - Budapest: Kiadja a KFKI Atomenergia Kutato Intezet, 1999. - С. 453-468.
  31. Ludewig B., Stein J. V., Sharpe J., Cervantes-Barragan L., Thiel V., Bocharov G. A global imaging view on systems approaches in immunology// Eur. J. Immunol. - 2012. - 42. - С. 3116-3125.
  32. Luzyanina T., Engelborghs K., Ehl S., Klenerman P., Bocharov G. Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis// Math. Biosci. - 2001. - 173, № 1. - С. 1-23.
  33. Marchuk G. I. Mathematical Modelling of Immune Response in Infectious Diseases. - Dordrecht: Kluwer, 1997.
  34. Marchuk G. I., Nisevich N. I. (ed.) Mathematical Methods in Clinical Practice. - Oxford: Pergamon Press Ltd., 1980.
  35. Moskophidis D., Lechner F., Pircher H., Zinkernagel R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells// Nature. - 1993. - 362.- С. 758-758.
  36. Nechepurenko Yu. M., Sadkane M. A low-rank approximation for computing the matrix exponential norm// SIAM J. Matrix. Anal. Appl. - 2011. - 32, № 2. - С. 349-363.
  37. Nechepurenko Yu. M., Sadkane M. Computing humps of the matrix exponential// J. Comput. Appl. Math. - 2017. - 319. - С. 87-96.
  38. Reshotko E. Transient growth: A factor in bypass transition// Phys. Fluids. - 2001. - 13, № 5. - С. 1067- 1075.
  39. Takeuchi Y., Adachi N., Tokumaru H. The stability of generalized Volterra equations// J. Math. Anal. Appl. - 1978. - 62. - С. 453-473.
  40. Weyl H. The Classical Groups: Their Invariants and Representations. - Princeton: Princeton University Press, 2016.

Statistics

Views

Abstract - 59

PDF (Russian) - 74

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies